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Foreword



One of the most nerve-wracking periods when releasing the first version of an open source project occurs when the IRC channel is created. You are all alone, eagerly hoping and wishing for the first user to come along. I still vividly remember those days.


One of the first users that jumped on IRC was Clint, and how excited was I. Well… for a brief period, until I found out that Clint was actually a Perl user, no less working on a website that dealt with obituaries. I remember asking myself why couldn’t we get someone from a more “hyped” community, like Ruby or Python (at the time), and a slightly nicer use case.


How wrong I was. Clint ended up being instrumental to the success of Elasticsearch. He was the first user to roll out Elasticsearch into production (version 0.4 no less!), and the interaction with Clint was pivotal during the early days in shaping Elasticsearch into what it is today. Clint has a unique insight into what is simple, and he is very rarely wrong, which has a huge impact on various usability aspects of Elasticsearch, from management, to API design, to day-to-day usability features. It was a no brainer for us to reach out to Clint and ask if he would join our company immediately after we formed it.


Another one of the first things we did when we formed the company was offer public training. It’s hard to express how nervous we were about whether or not people would even sign up for it.


We were wrong.


The trainings were and still are a rave success with waiting lists in all major cities. One of the people who caught our eye was a young fellow, Zach, who came to one of our trainings. We knew about Zach from his blog posts about using Elasticsearch (and secretly envied his ability to explain complex concepts in a very simple manner) and from a PHP client he wrote for the software. What we found out was that Zach had actually paid to attend the Elasticsearch training out of his own pocket! You can’t really ask for more than that, and we reached out to Zach and asked if he would join our company as well.


Both Clint and Zach are pivotal to the success of Elasticsearch. They are wonderful communicators who can explain Elasticsearch from its high-level simplicity, to its (and Apache Lucene’s) low-level internal complexities. It’s a unique skill that we dearly cherish here at Elasticsearch. Clint is also responsible for the Elasticsearch Perl client, while Zach is responsible for the PHP one -  both wonderful pieces of code.


And last, both play an instrumental role in most of what happens daily with the Elasticsearch project itself. One of the main reasons why Elasticsearch is so popular is its ability to communicate empathy to its users, and Clint and Zach are both part of the group that makes this a reality.



Preface



The world is swimming in data.  For years we have been simply overwhelmed by
the quantity of data flowing through and produced by our systems.  Existing
technology has focused on how to store and structure warehouses full of data.
That’s all well and good—until you actually need to make decisions in
real time informed by that data.


Elasticsearch is a distributed, scalable, real-time search and analytics engine.
It enables you to search, analyze, and explore your data, often in ways that
you did not anticipate at the start of a project.  It exists because raw data
sitting on a hard drive is just not useful.


Whether you need full-text search, real-time analytics of structured data, or
a combination of the two, this book introduces you to the fundamental
concepts required to start working with Elasticsearch at a basic level. With
these foundations laid, it will move on to more-advanced search techniques,
which you will need to shape the search experience to fit your requirements.


Elasticsearch is not just about full-text search. We explain structured
search, analytics, the complexities of dealing with human language,
geolocation, and relationships. We will also discuss how best to model your
data to take advantage of the horizontal scalability of Elasticsearch, and how
to configure and monitor your cluster when moving to production.








Who Should Read This Book


This book is for anybody who wants to put their data to work.  It doesn’t
matter whether you are starting a new project and have the flexibility to
design the system from the ground up, or whether you need to give new life to
a legacy system.  Elasticsearch will help you to solve existing problems and
open the way to new features that you haven’t yet considered.


This book is suitable for novices and experienced users alike. We expect you
to have some programming background and, although not required, it would help
to have used SQL and a relational database. We explain concepts from first
principles, helping novices to gain a sure footing in the complex world of
search.


The reader with a search background will also benefit from this book.
Elasticsearch is a new technology that has some familiar concepts.  The more
experienced user will gain an understanding of how those concepts have been
implemented and how they interact in the context of Elasticsearch. Even  the
early chapters contain nuggets of information that will be useful to the
more advanced user.


Finally, maybe you are in DevOps. While the other departments are stuffing
data into Elasticsearch as fast as they can, you’re the one charged with
stopping their servers from bursting into flames. Elasticsearch scales
effortlessly, as long as your users play within the rules. You need to know
how to set up a stable cluster before going into production, and then be able to
recognize the warning signs at three in the morning in order to prevent
catastrophe. The earlier chapters may be of less interest to you, but the last
part of the book is essential reading—all you need to know to avoid
meltdown.

















Why We Wrote This Book


We wrote this book because Elasticsearch needs a narrative.  The existing
reference documentation is excellent—as long as you know what you are
looking for. It assumes that you are intimately familiar with information-retrieval concepts, distributed systems, the query DSL, and a host of other
topics.


This book makes no such assumptions.  It has been written so that a complete
beginner—to both search and distributed systems—can pick it up and start
building a prototype within a few chapters.


We have taken a problem-based approach: this is the problem, how do I solve
it, and what are the trade-offs of the alternative solutions? We start with the
basics, and each chapter builds on the preceding ones, providing practical
examples and explaining the theory where necessary.


The existing reference documentation explains how to use features.  We want
this book to explain why and when to use various features.

















Elasticsearch Version


The explanations and code examples in this book target the latest version of
Elasticsearch available at the time of going to print—version 1.4.0—but
Elasticsearch is a rapidly evolving project.  The online version of this book
will be updated as Elasticsearch changes.


You can find the latest version of this book online.


You can also track the changes that have been made by visiting the GitHub repository.

















How to Read This Book


Elasticsearch tries very hard to make the complex simple, and to a large
degree it succeeds in this. That said, search and distributed systems are
complex, and sooner or later you have to get to grips with some of the
complexity in order to take full advantage of Elasticsearch.


Complexity, however, is not the same as magic.  We tend to view complex
systems as magical black boxes that respond to incantations, but there are
usually simple processes at work within. Understanding these processes helps
to dispel the magic—instead of hoping that the black box will do what you
want, understanding gives you certainty and clarity.


This is a definitive guide: we help you not only to get started with
Elasticsearch, but also to tackle the deeper more, interesting topics. These include Chapter 2, Chapter 4,
Chapter 9, and Chapter 11, which are not essential
reading but do give you a solid understanding of the internals.


The first part of the book should be read in order as each chapter builds on
the previous one (although you can skim over the chapters just mentioned).  Later chapters such as Chapter 15 and Chapter 16
are more standalone and can be referred to as needed.

















Navigating This Book


This book is divided into seven parts:



	
Chapters 1 through 11
provide an introduction to Elasticsearch. They
explain how to get your data in and out of Elasticsearch, how Elasticsearch
interprets the data in your documents, how basic search works, and how to
manage indices. By the end of this section, you will already be able to
integrate your application with Elasticsearch. Chapters 2, 4, 9, and 11
are supplemental chapters that provide more insight into the distributed
processes at work, but are not required reading.



	
Chapters 12 through 17
offer a deep dive into search—how to index and
query your data to allow  you to take advantage of more-advanced concepts
such as word proximity, and partial matching. You will understand how
relevance works and how to control it to ensure that the best results are
on the first page.



	
Chapters 18 through 24
tackle the thorny subject of dealing with human
language through effective use of analyzers and queries. We start with
an easy approach to language analysis before diving into the complexities
of language, alphabets, and sorting. We cover stemming, stopwords, synonyms,
and fuzzy matching.



	
Chapters 25 through 35
discuss aggregations and analytics—ways to summarize and group your data to show overall trends.



	
Chapters 36 through 39
present the two approaches to geolocation
supported by Elasticsearch: lat/lon geo-points, and complex geo-shapes.



	
Chapters 40 through 43
talk about how to model your data to work
most efficiently with Elasticsearch.  Representing relationships
between entities is not as easy in a search engine as it is in
a relational database, which has been designed for that purpose.
These chapters also explain how to suit your index design to
match the flow of data through your system.



	
Finally, Chapters 44 through 46
discuss moving to production: the important configurations, what to monitor, and how to diagnose and prevent problems.






There are three topics that we do not cover in this book, because they are evolving rapidly and anything we
write will soon be out-of-date:



	
Highlighting of result snippets: see Highlighting.



	
Did-you-mean and search-as-you-type suggesters: see Suggesters.



	
Percolation—finding queries which match a document: see Percolators.





















Online Resources


Because this book focuses on problem solving in Elasticsearch rather than syntax, we sometimes reference the existing documentation for a complete
list of parameters.  The reference documentation can be found here:


http://www.elasticsearch.org/guide/

















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates emphasis, and new terms or concepts.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.





Tip

This icon signifies a tip, suggestion.



Note

This icon signifies a general note.



Warning

This icon indicates a warning or caution.



















Using Code Examples


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: Elasticsearch: The Definitive Guide by Clinton Gormley and Zachary Tony (O’Reilly). Copyright 2015 Elasticsearch BV, 978-1-449-35854-9.


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

















Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.




Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.


Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/1ylQuK6.


To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://www.youtube.com/oreillymedia
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Part I. Getting Started



Elasticsearch is a real-time distributed search and analytics engine. It
allows you to explore your data at a speed and at a scale never before
possible. It is used for full-text search, structured search, analytics, and all three
in combination:



	
Wikipedia uses Elasticsearch to provide full-text search with highlighted
search snippets, and search-as-you-type and did-you-mean suggestions.



	
The Guardian uses Elasticsearch to combine visitor logs with social
-network data to provide real-time feedback to its editors about the
 public’s response to new articles.



	
Stack Overflow combines full-text search with geolocation queries and uses
more-like-this to find related questions and answers.



	
GitHub uses Elasticsearch to query 130 billion lines of code.






But Elasticsearch is not just for mega-corporations. It has enabled many
startups like Datadog and Klout to prototype ideas and to turn them into
scalable solutions. Elasticsearch can run on your laptop, or scale out to
hundreds of servers and petabytes of data.


No individual part of Elasticsearch is new or revolutionary. Full-text search
has been done before, as have analytics systems and distributed databases. The
revolution is the combination of these individually useful parts into a
single, coherent, real-time application. It has a low barrier to entry for the
new user, but can keep pace with you as your skills and needs grow.


If you are picking up this book, it is because you have data, and there is no
point in having data unless you plan to do something with it.


Unfortunately, most databases are astonishingly inept at extracting actionable
knowledge from your data. Sure, they can filter by timestamp or exact values,
but can they perform full-text search, handle synonyms, and score documents by
relevance?  Can they generate analytics and aggregations from the same data?
Most important, can they do this in real time without big batch-processing
jobs?


This is what sets Elasticsearch apart: Elasticsearch encourages you to explore
and utilize your data, rather than letting it rot in a warehouse because it is
too difficult to query.


Elasticsearch is your new best friend.










































































































































































Chapter 1. You Know, for Search…



Elasticsearch is an open-source search engine built on top of
Apache Lucene™, a full-text search-engine
library.  Lucene is arguably the most advanced, high-performance, and fully featured
search engine library in existence today—both open source and proprietary.


But Lucene is just a library. To leverage its power, you need to work in Java
and to integrate Lucene directly with your application. Worse, you will likely
require a degree in information retrieval to understand how it works.  Lucene
is very complex.


Elasticsearch is also written in Java and uses Lucene internally for all of
its indexing and searching, but it aims to make full-text search easy by hiding
the complexities of Lucene behind a simple, coherent, RESTful API.


However, Elasticsearch is much more than just Lucene and much more than
“just” full-text search. It can also be described as follows:



	
A distributed real-time document store where every field is indexed and
searchable



	
A distributed search engine with real-time analytics



	
Capable of scaling to hundreds of servers and petabytes of structured
and unstructured data






And it packages up all this functionality into a standalone server that
your application can talk to via a simple RESTful API, using a web client from
your favorite programming language, or even from the command line.


It is easy to get started with Elasticsearch. It ships with sensible defaults
and hides complicated search theory away from beginners. It just works,
right out of the box. With minimal understanding, you can soon become
productive.


Elasticsearch can be downloaded, used, and modified free of charge. It is
available under the Apache 2 license,
one of the most flexible open source licenses available.


As your knowledge grows, you can leverage more of Elasticsearch’s advanced
features. The entire engine is configurable and flexible. Pick and choose
from the advanced features to tailor Elasticsearch to your problem domain.


The Mists of Time

Many years ago, a newly married unemployed developer called Shay Banon
followed his wife to London, where she was studying to be a chef. While looking
for gainful employment, he started playing with an early version of Lucene,
with the intent of building his wife a recipe search engine.


Working directly with Lucene can be tricky, so Shay started work on an
abstraction layer to make it easier for Java programmers to add search to
their applications.  He released this as his first open source project, called
Compass.


Later Shay took a job working in a high-performance, distributed environment
with in-memory data grids.  The need for a high-performance, real-time,
distributed search engine was obvious, and he decided to rewrite the Compass
libraries as a standalone server called Elasticsearch.


The first public release came out in February 2010.  Since then, Elasticsearch
has become one of the most popular projects on GitHub with commits from over
300 contributors.  A company has formed around Elasticsearch to provide
commercial support and to develop new features, but Elasticsearch is, and
forever will be, open source and available to all.


Shay’s wife is still waiting for the recipe search…










Installing Elasticsearch


The easiest way to understand what Elasticsearch can do for you is to
play with it, so let’s get started!


The only requirement for installing Elasticsearch is a recent version of Java.
Preferably, you should install the latest version of the official Java
from www.java.com.


You can download the latest version of Elasticsearch from
elasticsearch.org/download.


curl -L -O http://download.elasticsearch.org/PATH/TO/VERSION.zip [image: 1]
unzip elasticsearch-$VERSION.zip
cd  elasticsearch-$VERSION


	[image: 1]

	Fill in the URL for the latest version available on
elasticsearch.org/download.




Tip

When installing Elasticsearch in production, you can use the method
described previously, or the Debian or RPM packages provided on the
downloads page. You can also use
the officially supported
Puppet module or
Chef cookbook.












Installing Marvel


Marvel is a management and monitoring
tool for Elasticsearch, which is free for development use. It comes with an
interactive console called Sense, which makes it easy to talk to
Elasticsearch directly from your browser.


Many of the code examples in the online version of this book include a View in Sense link. When
clicked, it will open up a working example of the code in the Sense console.
You do not have to install Marvel, but it will make this book much more
interactive by allowing you to  experiment with the code samples on your local
Elasticsearch cluster.


Marvel is available as a plug-in. To download and install it, run this command
in the Elasticsearch directory:


./bin/plugin -i elasticsearch/marvel/latest


You probably don’t want Marvel to monitor your local cluster, so you can
disable data collection with this command:


echo 'marvel.agent.enabled: false' >> ./config/elasticsearch.yml
























Running Elasticsearch


Elasticsearch is now ready to run. You can start it up in the foreground
with this:


./bin/elasticsearch


Add -d if you want to run it in the background as a daemon.


Test it out by opening another terminal window and running the following:


curl 'http://localhost:9200/?pretty'


You should see a response like this:


{
   "status": 200,
   "name": "Shrunken Bones",
   "version": {
      "number": "1.4.0",
      "lucene_version": "4.10"
   },
   "tagline": "You Know, for Search"
}


This means that your Elasticsearch cluster is up and running, and we can
start experimenting with it.

Note
A node is a running instance of Elasticsearch. A cluster is a group of
nodes with the same cluster.name that are working together to share data
and to provide failover and scale, although a single node can form a cluster
all by itself.



You should change the default cluster.name to something appropriate to you,
like your own name, to stop your nodes from trying to join another cluster on
the same network with the same name!


You can do this by editing the elasticsearch.yml file in the config/
directory and then restarting Elasticsearch.  When Elasticsearch is running in
the foreground, you can stop it by pressing Ctrl-C; otherwise, you can shut
it down with the shutdown API:


curl -XPOST 'http://localhost:9200/_shutdown'










Viewing Marvel and Sense


If you installed the Marvel management and monitoring tool, you can
view it in a web browser by visiting
http://localhost:9200/_plugin/marvel/.


You can reach the Sense developer console either by clicking the “Marvel
dashboards” drop-down in Marvel, or by visiting
http://localhost:9200/_plugin/marvel/sense/.
























Talking to Elasticsearch


How you talk to Elasticsearch depends on whether you are using Java.










Java API


If you are using Java, Elasticsearch comes with two built-in clients
that you can use in your code:


	Node client

	
The node client joins a local cluster as a non data node. In other
words, it doesn’t hold any data itself, but it knows what data lives
on which node in the cluster, and can forward requests directly
to the correct node.



	Transport client

	
The lighter-weight transport client can be used to send requests to
a remote cluster. It doesn’t join the cluster itself, but simply
forwards requests to a node in the cluster.






Both Java clients talk to the cluster over port 9300, using the native
Elasticsearch transport protocol.  The nodes in the cluster also communicate
with each other over port 9300. If this port is not open, your nodes will
not be able to form a cluster.

Tip

The Java client must be from the same version of Elasticsearch as the nodes;
otherwise, they may not be able to understand each other.




More information about the Java clients can be found in the Java API section
of the Guide.

















RESTful API with JSON over HTTP


All other languages can communicate with Elasticsearch over port 9200 using
a RESTful API, accessible with your favorite web client. In fact, as you have
seen, you can even talk to Elasticsearch from the command line by using the
curl command.

Note
Elasticsearch provides official clients for several languages—Groovy,
JavaScript, .NET, PHP, Perl, Python, and Ruby—and there are numerous
community-provided clients and integrations, all of which can be found in the
Guide.



A request to Elasticsearch consists of the same parts as any HTTP request:


curl -X<VERB> '<PROTOCOL>://<HOST>/<PATH>?<QUERY_STRING>' -d '<BODY>'


The parts marked with < > above are:


	VERB

	
The appropriate HTTP method or verb: GET, POST, PUT, HEAD, or DELETE.



	PROTOCOL

	
Either http or https (if you have an https proxy in front of Elasticsearch.)



	HOST

	
The hostname of any node in your Elasticsearch cluster, or localhost for a node on your local machine.



	PORT

	
The port running the Elasticsearch HTTP service, which defaults to 9200.



	QUERY_STRING

	
Any optional query-string parameters (for example ?pretty will pretty-print  the JSON response to make it easier to read.)



	BODY

	
A JSON-encoded request body (if the request needs one.)






For instance, to count the number of documents in the cluster, we could use this:


curl -XGET 'http://localhost:9200/_count?pretty' -d '
{
    "query": {
        "match_all": {}
    }
}
'


Elasticsearch returns an HTTP status code like 200 OK and (except for HEAD
requests) a JSON-encoded response body. The preceding curl request would respond
with a JSON body like the following:


{
    "count" : 0,
    "_shards" : {
        "total" : 5,
        "successful" : 5,
        "failed" : 0
    }
}


We don’t see the HTTP headers in the response because we didn’t ask curl to
display them. To see the headers, use the curl command with the -i
switch:


curl -i -XGET 'localhost:9200/'


For the rest of the book, we will show these curl examples using a shorthand
format that leaves out all the bits that are the same in every request,
like the hostname and port, and the curl command itself. Instead of showing
a full request like


curl -XGET 'localhost:9200/_count?pretty' -d '
{
    "query": {
        "match_all": {}
    }
}'


we will show it in this shorthand format:


GET /_count
{
    "query": {
        "match_all": {}
    }
}


In fact, this is the same format that is used by the Sense console that we
installed with Marvel. If in the online version of this book, you can open and run this code example in
Sense by clicking the View in Sense link above.
























Document Oriented


Objects in an application are seldom just a simple list of keys and values.
More often than not, they are complex data structures that may contain dates,
geo locations, other objects, or arrays of values.


Sooner or later you’re going to want to store these objects in a database.
Trying to do this with the rows and columns of a relational database is the
equivalent of trying to squeeze your rich, expressive objects into a very big
spreadsheet: you have to flatten the object to fit the table schema—usually
one field per column—and then have to reconstruct it every time you
retrieve it.


Elasticsearch is document oriented, meaning that it stores entire objects or
documents.  It not only stores them, but also indexes the contents of
each document in order to make them searchable. In Elasticsearch, you index,
search, sort, and filter documents—not rows of columnar data.  This is a
fundamentally different way of thinking about data and is one of the reasons
Elasticsearch can perform complex full-text search.










JSON


Elasticsearch uses JavaScript Object Notation, or JSON, as the serialization format for documents. JSON
serialization is supported by most programming languages, and has become the
standard format used by the NoSQL movement. It is simple, concise, and easy to
read.


Consider this JSON document, which represents a user object:


{
    "email":      "john@smith.com",
    "first_name": "John",
    "last_name":  "Smith",
    "info": {
        "bio":         "Eco-warrior and defender of the weak",
        "age":         25,
        "interests": [ "dolphins", "whales" ]
    },
    "join_date": "2014/05/01"
}


Although the original user object was complex, the structure and meaning of
the object has been retained in the JSON version. Converting an object to JSON
for indexing in Elasticsearch is much simpler than the equivalent process for
a flat table structure.

Note

Almost all languages have modules that will convert arbitrary  data
structures or objects into JSON for you, but the details are specific  to each
language. Look for modules that handle JSON serialization or marshalling. The official
Elasticsearch clients all handle conversion to and from JSON for you
automatically.


























Finding Your Feet


To give you a feel for what is possible in Elasticsearch and how easy
it is to use, let’s start by walking through a simple tutorial that covers
basic concepts such as indexing, search, and aggregations.


We’ll introduce some new terminology and basic concepts along the way, but it
is OK if you don’t understand everything immediately.  We’ll cover all the
concepts introduced here in much greater depth throughout the rest of the
book.


So, sit back and enjoy a whirlwind tour of what Elasticsearch is capable of.










Let’s Build an Employee Directory


We happen to work for Megacorp, and as part of HR’s new “We love our
drones!” initiative, we have been tasked with creating an employee directory.
The directory is supposed to foster employer empathy and
real-time, synergistic, dynamic collaboration, so it has a few
business requirements:



	
Enable data to contain multi value tags, numbers, and full text.



	
Retrieve the full details of any employee.



	
Allow structured search, such as finding employees over the age of 30.



	
Allow simple full-text search and more-complex phrase searches.



	
Return highlighted search snippets from the text in the
matching documents.



	
Enable management to build analytic dashboards over the data.




























Indexing Employee Documents


The first order of business is storing employee data.  This will take the form
of an employee document’: a single document represents a single
employee.  The act of storing data in Elasticsearch is called indexing, but
before we can index a document, we need to decide where to store it.


In Elasticsearch, a document belongs to a type, and those types live inside
an index. You can draw some (rough) parallels to a traditional relational database:


Relational DB  ⇒ Databases ⇒ Tables ⇒ Rows      ⇒ Columns
Elasticsearch  ⇒ Indices   ⇒ Types  ⇒ Documents ⇒ Fields


An Elasticsearch cluster can contain multiple indices (databases), which in
turn contain multiple types (tables). These types hold multiple documents
(rows), and each document has multiple fields (columns).


Index Versus Index Versus Index

You may already have noticed that the word index is overloaded with
several meanings in the context of Elasticsearch. A little
clarification is necessary:


	Index (noun)

	
As explained previously, an index is like a database in a traditional
relational database. It is the place to store related documents. The plural of
index is indices or indexes.



	Index (verb)

	
To index a document is to store a document in an index (noun) so
that it can be retrieved and queried. It is much like the INSERT keyword in
SQL except that, if the document already exists, the new document would
replace the old.



	Inverted index

	
Relational databases add an index, such as a B-tree index, to specific
columns in order to improve the speed of data retrieval.  Elasticsearch and
Lucene use a structure called an inverted index for exactly the same
purpose.


By default, every field in a document is indexed (has an inverted index)
and thus is searchable. A field without an inverted index is not searchable.
We discuss inverted indexes in more detail in “Inverted Index”.








So for our employee directory, we are going to do the following:



	
Index a document per employee, which contains all the details of a single
employee.



	
Each document will be of type employee.



	
That type will live in the megacorp index.



	
That index will reside within our Elasticsearch cluster.






In practice, this is easy (even though it looks like a lot of steps).  We
can perform all of those actions in a single command:


PUT /megacorp/employee/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}


Notice that the path /megacorp/employee/1 contains three pieces of
information:


	megacorp

	
The index name



	employee

	
The type name



	1

	
The ID of this particular employee






The request body—the JSON document—contains all the information about
this employee.  His name is John Smith, he’s 25, and enjoys rock climbing.


Simple!  There was no need to perform any administrative tasks first, like
creating an index or specifying the type of data that each field contains. We
could just index a document directly.  Elasticsearch ships with defaults for
everything, so all the necessary administration tasks were taken care of in
the background, using default values.


Before moving on, let’s add a few more employees to the directory:


PUT /megacorp/employee/2
{
    "first_name" :  "Jane",
    "last_name" :   "Smith",
    "age" :         32,
    "about" :       "I like to collect rock albums",
    "interests":  [ "music" ]
}

PUT /megacorp/employee/3
{
    "first_name" :  "Douglas",
    "last_name" :   "Fir",
    "age" :         35,
    "about":        "I like to build cabinets",
    "interests":  [ "forestry" ]
}

















Retrieving a Document


Now that we have some data stored in Elasticsearch, we can get to work on the
business requirements for this application.  The first requirement is the
ability to retrieve individual employee data.


This is easy in Elasticsearch.  We simply execute an HTTP GET request and
specify the address of the document—the index, type, and ID.  Using
those three pieces of information, we can return the original JSON document:


GET /megacorp/employee/1


And the response contains some metadata about the document, and John Smith’s
original JSON document as the _source field:


{
  "_index" :   "megacorp",
  "_type" :    "employee",
  "_id" :      "1",
  "_version" : 1,
  "found" :    true,
  "_source" :  {
      "first_name" :  "John",
      "last_name" :   "Smith",
      "age" :         25,
      "about" :       "I love to go rock climbing",
      "interests":  [ "sports", "music" ]
  }
}

Tip

In the same way that we changed the HTTP verb from PUT to GET in order to
retrieve the document, we could use the DELETE verb to delete the  document,
and the HEAD verb to check whether the document exists. To replace an
existing document with an updated version, we just PUT it again.



















Search Lite


A GET is fairly simple—you get back the document that you ask for.  Let’s
try something a little more advanced, like a simple search!


The first search we will try is the simplest search possible.  We will search
for all employees, with this request:


GET /megacorp/employee/_search


You can see that we’re still using index megacorp and type employee, but
instead of specifying a document ID, we now use the _search endpoint. The
response includes all three of our documents in the hits array. By default,
a search will return the top 10 results.


{
   "took":      6,
   "timed_out": false,
   "_shards": { ... },
   "hits": {
      "total":      3,
      "max_score":  1,
      "hits": [
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "3",
            "_score":         1,
            "_source": {
               "first_name":  "Douglas",
               "last_name":   "Fir",
               "age":         35,
               "about":       "I like to build cabinets",
               "interests": [ "forestry" ]
            }
         },
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "1",
            "_score":         1,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "2",
            "_score":         1,
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

Note
The response not only tells us which documents matched, but also
includes the whole document itself: all the information that we need in order to
display the search results to the user.



Next, let’s try searching for employees who have “Smith” in their last name.
To do this, we’ll use a lightweight search method that is easy to use
from the command line. This method is often referred to as a query-string
search, since we pass the search as a URL query-string parameter:


GET /megacorp/employee/_search?q=last_name:Smith


We use the same _search endpoint in the path, and we add the query itself in
the q= parameter. The results that come back show all Smiths:


{
   ...
   "hits": {
      "total":      2,
      "max_score":  0.30685282,
      "hits": [
         {
            ...
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            ...
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

















Search with Query DSL


Query-string search is handy for ad hoc searches from the command line, but
it has its limitations (see “Search Lite”). Elasticsearch provides a rich,
flexible, query language called the query DSL, which allows us to build
much more complicated, robust queries.


The domain-specific language (DSL) is specified using a JSON request body.
We can represent the previous search for all Smiths like so:


GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "last_name" : "Smith"
        }
    }
}


This will return the same results as the previous query.  You can see that a
number of things have changed.  For one, we are no longer using query-string
parameters, but instead a request body.  This request body is built with JSON,
and uses a match query (one of several types of queries, which we will learn
about later).

















More-Complicated Searches


Let’s make the search a little more complicated.  We still want to find all
employees with a last name of Smith, but  we want only employees who are
older than 30.  Our query will change a little to accommodate a filter,
which allows us to execute structured searches efficiently:


GET /megacorp/employee/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "range" : {
                    "age" : { "gt" : 30 } [image: 1]
                }
            },
            "query" : {
                "match" : {
                    "last_name" : "smith" [image: 2]
                }
            }
        }
    }
}


	[image: 1]

	This portion of the query is a range filter, which will find all ages
older than 30—gt stands for greater than.


	[image: 2]

	This portion of the query is the same match query that we used before.





Don’t worry about the syntax too much for now; we will cover it in great
detail later.  Just recognize that we’ve added a filter that performs a
range search, and reused the same match query as before.  Now our results show only one employee who happens to be 32 and is named Jane Smith:


{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.30685282,
      "hits": [
         {
            ...
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

















Full-Text Search


The searches so far have been simple:  single names, filtered by age. Let’s
try a more advanced, full-text search—a task that traditional databases
would really struggle with.


We are going to search for all employees who enjoy rock climbing:


GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "about" : "rock climbing"
        }
    }
}


You can see that we use the same match query as before to search the about
field for “rock climbing.” We get back two matching documents:


{
   ...
   "hits": {
      "total":      2,
      "max_score":  0.16273327,
      "hits": [
         {
            ...
            "_score":         0.16273327, [image: 1]
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            ...
            "_score":         0.016878016, [image: 1]
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}


	[image: 1]

	The relevance scores





By default, Elasticsearch sorts matching results by their relevance score,
that is, by how well each document matches the query.  The first and highest-scoring result is obvious: John Smith’s about field clearly says “rock
climbing” in it.


But why did Jane Smith come back as a result?  The reason her document was
returned is because the word “rock” was mentioned in her about field.
Because only “rock” was mentioned, and not “climbing,” her _score is
lower than John’s.


This is a good example of how Elasticsearch can search within full-text
fields and return the most relevant results first. This concept of relevance
is important to Elasticsearch, and is a concept that is completely foreign to
traditional relational databases, in which a record either matches or it doesn’t.

















Phrase Search


Finding individual words in a field is all well and good, but sometimes you
want to match exact sequences of words or phrases. For instance, we could
perform a query that will match only employee records that contain both  “rock”
and “climbing” and that display the words are next to each other in the phrase
“rock climbing.”


To do this, we use a slight variation of the match query called the
match_phrase query:


GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    }
}


This, to no surprise, returns only John Smith’s document:


{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.23013961,
      "hits": [
         {
            ...
            "_score":         0.23013961,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         }
      ]
   }
}

















Highlighting Our Searches


Many applications like to highlight snippets of text from each search result
so the user can see why the document matched the query.  Retrieving
highlighted fragments is easy in Elasticsearch.


Let’s rerun our previous query, but add a new highlight parameter:


GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    },
    "highlight": {
        "fields" : {
            "about" : {}
        }
    }
}


When we run this query, the same hit is returned as before, but now we get a
new section in the response called highlight.  This contains a snippet of
text from the about field with the matching words wrapped in <em></em>
HTML tags:


{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.23013961,
      "hits": [
         {
            ...
            "_score":         0.23013961,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            },
            "highlight": {
               "about": [
                  "I love to go <em>rock</em> <em>climbing</em>" [image: 1]
               ]
            }
         }
      ]
   }
}


	[image: 1]

	The highlighted fragment from the original text





You can read more about the highlighting of search snippets in the
highlighting reference documentation.

















Analytics


Finally, we come to our last business requirement: allow managers to run
analytics over the employee directory.  Elasticsearch has functionality called
aggregations, which allow you to generate sophisticated analytics over your
data. It is similar to GROUP BY in SQL, but much more powerful.


For example, let’s find the most popular interests enjoyed by our employees:


GET /megacorp/employee/_search
{
  "aggs": {
    "all_interests": {
      "terms": { "field": "interests" }
    }
  }
}


Ignore the syntax for now and just look at the results:


{
   ...
   "hits": { ... },
   "aggregations": {
      "all_interests": {
         "buckets": [
            {
               "key":       "music",
               "doc_count": 2
            },
            {
               "key":       "forestry",
               "doc_count": 1
            },
            {
               "key":       "sports",
               "doc_count": 1
            }
         ]
      }
   }
}


We can see that two employees are interested in music, one in forestry, and one
in sports.  These aggregations are not precalculated; they are generated on
the fly from the documents that match the current query. If we want to know
the popular interests of people called Smith, we can just add the
appropriate query into the mix:


GET /megacorp/employee/_search
{
  "query": {
    "match": {
      "last_name": "smith"
    }
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "interests"
      }
    }
  }
}


The all_interests aggregation has changed to include only documents matching our query:


  ...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2
        },
        {
           "key": "sports",
           "doc_count": 1
        }
     ]
  }


Aggregations allow hierarchical rollups too.  For example, let’s find the
average age of employees who share a particular interest:


GET /megacorp/employee/_search
{
    "aggs" : {
        "all_interests" : {
            "terms" : { "field" : "interests" },
            "aggs" : {
                "avg_age" : {
                    "avg" : { "field" : "age" }
                }
            }
        }
    }
}


The aggregations that we get back are a bit more complicated, but still fairly
easy to understand:


  ...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2,
           "avg_age": {
              "value": 28.5
           }
        },
        {
           "key": "forestry",
           "doc_count": 1,
           "avg_age": {
              "value": 35
           }
        },
        {
           "key": "sports",
           "doc_count": 1,
           "avg_age": {
              "value": 25
           }
        }
     ]
  }


The output is basically an enriched version of the first aggregation we ran.
We still have a list of interests and their counts, but now each interest has
an additional avg_age, which shows the average age for all employees having
that interest.


Even if you don’t understand the syntax yet, you can easily see how complex aggregations and groupings can be accomplished using this feature.
The sky is the limit as to what kind of data you can extract!

















Tutorial Conclusion


Hopefully, this little tutorial was a good demonstration about what is possible
in Elasticsearch.  It is really just scratching the surface, and many features—such as suggestions, geolocation, percolation, fuzzy and partial matching—were omitted to keep the tutorial short. But it did highlight just how
easy it is to start building advanced search functionality.  No configuration
was needed—just add data and start searching!


It’s likely that the syntax left you confused in places, and you may have questions
about how to tweak and tune various aspects. That’s fine! The rest of the
book dives into each of these issues in detail, giving you a solid
understanding of how Elasticsearch works.

















Distributed Nature


At the beginning of this chapter, we said that Elasticsearch can scale out to
hundreds (or even thousands) of servers and handle petabytes of data. While
our tutorial gave examples of how to use Elasticsearch, it didn’t touch on the
mechanics at all. Elasticsearch is distributed by nature, and it is designed
to hide the complexity that comes with being distributed.


The distributed aspect of Elasticsearch is largely transparent.  Nothing in
the tutorial required you to know about distributed systems, sharding, cluster
discovery, or dozens of other distributed concepts.  It happily ran the
tutorial on a single node living inside your laptop, but if you were to run
the tutorial on a cluster containing 100 nodes, everything would work in
exactly the same way.


Elasticsearch tries hard to hide the complexity of distributed systems. Here are some of
the operations happening automatically under the hood:



	
Partitioning your documents into different containers or shards, which
can be stored on a single node or on  multiple nodes



	
Balancing these shards across the nodes in your cluster to spread the
indexing and search load



	
Duplicating each shard to provide redundant copies of your data, to
prevent data loss in case of hardware failure



	
Routing requests from any node in the cluster to the nodes that hold the
data you’re interested in



	
Seamlessly integrating new nodes as your cluster grows or redistributing
shards to recover from node loss






As you read through this book, you’ll encounter supplemental chapters about the
distributed nature of Elasticsearch.  These chapters will teach you about
how the cluster scales and deals with failover (Chapter 2),
handles document storage (Chapter 4), executes distributed search
(Chapter 9), and what a shard is and how it works
(Chapter 11).


These chapters are not required reading—you can use Elasticsearch without
understanding these internals—but they will provide insight that will make
your knowledge of Elasticsearch more complete. Feel free to skim them and
revisit at a later point when you need a more complete understanding.

















Next Steps


By now you should have a taste of what you can do with Elasticsearch, and how
easy it is to get started. Elasticsearch tries hard to work out of the box
with minimal knowledge and configuration. The best way to learn Elasticsearch
is by jumping in: just start indexing and searching!


However, the more you know about Elasticsearch, the more productive you can
become.  The more you can tell Elasticsearch about the domain-specific
elements of your application, the more you can fine-tune the output.


The rest of this book will help you move from novice to expert. Each chapter explains the essentials, but also includes expert-level tips.  If
you’re just getting started, these tips are probably not immediately relevant
to you; Elasticsearch has sensible defaults and will generally do the right
thing without any interference.  You can always revisit these chapters later,
when you are looking to improve performance by shaving off any wasted
milliseconds.












Chapter 4. Distributed Document Store



In the preceding chapter, we looked at all the ways to put data into your index and
then retrieve it.  But we glossed over many technical details surrounding how
the data is distributed and fetched from the cluster.  This separation is done
on purpose; you don’t really need to know how data is distributed to work
with Elasticsearch.  It just works.


In this chapter, we dive into those internal, technical details
to help you understand how your data is stored in a distributed system.


Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch. The
options that are discussed are for advanced users only.


Read the section to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the detail.










Routing a Document to a Shard


When you index a document, it is stored on a single primary shard. How does
Elasticsearch know which shard a document belongs to?  When we create a new
document, how does it know whether it should store that document on shard 1 or
shard 2?


The process can’t be random, since we may need to retrieve the document in the
future. In fact, it is determined by a simple formula:

shard = hash(routing) % number_of_primary_shards


The routing value is an arbitrary string, which defaults to the document’s
_id but can also be set to a custom value. This routing string is passed
through a hashing function to generate a number, which is divided by the
number of primary shards in the index to return the remainder. The remainder
will always be in the range 0 to number_of_primary_shards - 1, and gives
us the number of the shard where a particular document lives.


This explains why the number of primary shards can be set only when an index
is created and never changed:  if the number of primary shards ever changed in
the future, all previous routing values would be invalid and documents would
never be found.

Note

Users sometimes think that having a fixed number of primary shards makes it
difficult to scale out an index later.  In reality, there are techniques
that make it easy to scale out as and when you need. We talk more about these
in Chapter 43.




All document APIs (get, index, delete, bulk, update, and mget)
accept a routing parameter that can be used to customize the document-to-
shard mapping. A custom routing value could be used to ensure that all related
documents—for instance, all the documents belonging to the same user—are
stored on the same shard. We discuss in detail why you may want to do this in
Chapter 43.

















How Primary and Replica Shards Interact


For explanation purposes, let’s imagine that we have a cluster
consisting of three nodes. It contains one index called blogs that has
two primary shards. Each primary shard has two replicas. Copies of
the same shard are never allocated to the same node, so our cluster
looks something like Figure 4-1.



[image: A cluster with three nodes and one index]
Figure 4-1. A cluster with three nodes and one index




We can send our requests to any node in the cluster. Every node is fully
capable of serving any request.  Every node knows the location of every
document in the cluster and so can forward requests directly to the required
node. In the following examples, we will send all of our requests to Node 1,
which we will refer to as  the requesting node.

Tip
When sending requests, it is good practice to round-robin through all the
nodes in the cluster, in order to spread the load.


















Creating, Indexing, and Deleting a Document


Create, index, and delete requests are write operations, which must be
successfully completed on the primary shard before they can be copied to any
associated replica shards, as shown in Figure 4-2.



[image: Creating, indexing or deleting a single document]
Figure 4-2. Creating, indexing, or deleting a single document




Here is the sequence of steps necessary to successfully create, index, or
delete a document on both the primary and any replica shards:


	
The client sends a create, index, or delete request to Node 1.



	
The node uses the document’s _id to determine that the document
belongs to shard 0. It forwards the request to Node 3,
where the primary copy of shard 0 is currently allocated.



	
Node 3 executes the request on the primary shard. If it is successful,
it forwards the request in parallel to the replica shards on Node 1 and
Node 2. Once all of the replica shards report success, Node 3 reports
success to the requesting node, which reports success to the client.







By the time the client receives a successful response, the document change has
been executed on the primary shard and on all replica shards. Your change is
safe.


There are a number of optional request parameters that allow you to influence
this process, possibly increasing performance at the cost of data security.
These options are seldom used because Elasticsearch is already fast, but they
are explained here for the sake of completeness:


	replication

	

The default value for replication is sync. This causes the primary shard to
wait for successful responses from the replica shards before returning.


If you set replication to async, it will return success to the client
as soon as the request has been executed on the primary shard. It will still
forward the request to the replicas, but you will not know whether the replicas
succeeded.


This option is mentioned specifically to advise against using it.  The default
sync replication allows Elasticsearch to exert back pressure on whatever
system is feeding it with data. With async replication, it is possible to
overload Elasticsearch by sending too many requests without waiting for their
completion.






	consistency

	

By default, the primary shard requires a quorum, or majority, of shard copies
(where a shard copy can be a primary or a replica shard) to be available
before even attempting a write operation. This is to prevent writing data to the
“wrong side” of a network partition.  A quorum is defined as follows:

int( (primary + number_of_replicas) / 2 ) + 1


The allowed values for consistency are one (just the primary shard), all
(the primary and all replicas), or the default quorum, or majority, of shard
copies.


Note that the number_of_replicas is the number of replicas specified in
the index settings, not the number of replicas that are currently active.  If
you have specified that an index should have three replicas, a quorum would
be as follows:

int( (primary + 3 replicas) / 2 ) + 1 = 3


But if you start only two nodes, there will be insufficient active shard
copies to satisfy the quorum, and you will be unable to index or delete any
documents.






	timeout

	
What happens if insufficient shard copies are available? Elasticsearch waits,
in the hope that more shards will appear.  By default, it will wait up to 1
minute. If you need to, you can use the timeout parameter to make it abort
sooner: 100 is 100 milliseconds, and 30s is 30 seconds.





Note

A new index has 1 replica by default, which means that two active shard
copies should be required in order to satisfy the need for a quorum.
However, these default settings would prevent us from doing anything useful
with a single-node cluster.  To avoid this problem, the requirement for
a quorum is enforced only when number_of_replicas is greater than 1.



















Retrieving a Document


A document can be retrieved from a primary shard or from any of its replicas, as shown in Figure 4-3.



[image: Retrieving a single document]
Figure 4-3. Retrieving a single document




Here is the sequence of steps to retrieve a document from either a
primary or replica shard:


	
The client sends a get request to Node 1.



	
The node uses the document’s _id to determine that the document
belongs to shard 0. Copies of shard 0 exist on all three nodes.
On this occasion, it forwards the request to Node 2.



	
Node 2 returns the document to Node 1, which returns the document
to the client.







For read requests, the requesting node will choose a different shard copy on
every request in order to balance the load; it round-robins through all
shard copies.


It is possible that, while a document is being indexed, the document will
already be present on the primary shard but not yet copied to the replica
shards. In this case, a replica might report that the document doesn’t exist,
while the primary would have returned the document successfully. Once the
indexing request has returned success to the user, the document will be
available on the primary and all replica shards.

















Partial Updates to a Document


The update API , as shown in Figure 4-4, combines the read and write patterns explained previously.



[image: Partial updates to a document]
Figure 4-4. Partial updates to a document




Here is the sequence of steps used to perform a partial update on  a
document:


	
The client sends an update request to Node 1.



	
It forwards the request to Node 3, where the primary shard is allocated.



	
Node 3 retrieves the document from the primary shard, changes the JSON
in the _source field, and tries to reindex the document on the primary
shard. If the document has already been changed by another process, it
retries step 3 up to retry_on_conflict times, before giving up.



	
If Node 3 has managed to update the document successfully, it forwards
the new version of the document in parallel to the replica shards on  Node
1 and Node 2 to be reindexed. Once all replica shards report success,
Node 3 reports success to the requesting node,  which reports success to
the client.







The update API also accepts the routing, replication, consistency, and
timeout parameters that are explained in “Creating, Indexing, and Deleting a Document”.


Document-Based Replication

When a primary shard forwards changes to its replica shards, it doesn’t
forward the update request. Instead it forwards the new version of the full
document. Remember that these changes are forwarded to the replica shards
asynchronously, and there is no guarantee that they will arrive in the same
order that they were sent. If Elasticsearch forwarded just the change, it is
possible that changes would be applied in the wrong order, resulting in a
corrupt document.



















Multidocument Patterns


The patterns for the mget and bulk APIs are similar to those for
individual documents. The difference is that the requesting node knows in
which shard each document lives. It breaks up the multidocument request into
a multidocument request per shard, and forwards these in parallel to each
participating node.


Once it receives answers from each node, it collates their responses
into a single response, which it returns to the client, as shown in Figure 4-5.



[image: Retrieving multiple documents with mget]
Figure 4-5. Retrieving multiple documents with mget




Here is the sequence of steps necessary to retrieve multiple documents
with a single mget request:


	
The client sends an mget request to Node 1.



	
Node 1 builds a multi-get request per shard, and forwards these
requests in parallel to the nodes hosting each required primary or replica
shard. Once all replies have been received, Node 1 builds the response
and returns it to the client.







A routing parameter can be set for each document in the docs array.


The bulk API, as depicted in Figure 4-6, allows the execution of multiple create, index, delete, and update requests within a single bulk request.



[image: Multiple document changes with bulk]
Figure 4-6. Multiple document changes with bulk




The sequence of steps followed by the
bulk API are as follows:


	
The client sends a bulk request to Node 1.



	
Node 1 builds a bulk request per shard, and forwards these requests in
parallel to the nodes hosting each involved primary shard.



	
The primary shard executes each action serially, one after another. As each
action succeeds, the primary forwards the new document (or deletion) to its
replica shards in parallel, and then moves on to the next action. Once all
replica shards report success for all actions, the node reports success to
the requesting node, which collates the responses and returns them to the
client.







The bulk API also accepts the replication and consistency parameters
at the top level for the whole bulk request, and the routing parameter
in the metadata for each request.










Why the Funny Format?


When we learned about bulk requests earlier in “Cheaper in Bulk”, you may have asked
yourself, “Why does the bulk API require the funny format with the newline
characters, instead of just sending the requests wrapped in a JSON array, like
the mget API?”


To answer this, we need to explain a little background: Each document referenced in a bulk request may belong to a different primary
shard, each of which may be allocated to any of the nodes in the cluster. This
means that every action inside a bulk request needs to be forwarded to the
correct shard on the correct node.


If the individual requests were wrapped up in a JSON array, that would mean
that we would need to do the following:



	
Parse the JSON into an array (including the document data, which
can be very large)



	
Look at each request to determine which shard it should go to



	
Create an array of requests for each shard



	
Serialize these arrays into the internal transport format



	
Send the requests to each shard






It would work, but would need a lot of RAM to hold copies of essentially
the same data, and would create many more data structures that the Java Virtual Machine (JVM) would have to spend time garbage collecting.


Instead, Elasticsearch reaches up into the networking buffer, where the raw
request has been received, and reads the data directly. It uses the newline
characters to identify and parse just the small action/metadata lines in
order to decide which shard should handle each request.


These raw requests are forwarded directly to the correct shard. There
is no redundant copying of data, no wasted data structures. The entire
request process is handled in the smallest amount of memory possible.



















Chapter 5. Searching—The Basic Tools



So far, we have learned how to use Elasticsearch as a simple NoSQL-style
distributed document store. We can throw JSON documents at Elasticsearch and
retrieve each one by ID. But the real power of Elasticsearch lies in its
ability to make sense out of chaos — to turn Big Data into Big Information.


This is the reason that we use structured JSON documents, rather than
amorphous blobs of data.  Elasticsearch not only stores the document, but
also indexes the content of the document in order to make it searchable.


Every field in a document is indexed and can be queried.  And it’s not just
that. During a single query, Elasticsearch can use all of these indices, to
return results at breath-taking speed.  That’s something that you could never
consider doing with a traditional database.


A search can be any of the following:



	
A structured query on concrete fields like gender or age, sorted by
a field like join_date, similar to the type of query that you could construct
in SQL



	
A full-text query, which finds all documents matching the search keywords,
and returns them sorted by relevance



	
A combination of the two






While many searches will just work out of the box, to use Elasticsearch to
its full potential, you need to understand three subjects:


	Mapping

	
How the data in each field is interpreted



	Analysis

	
How full text is processed to make it searchable



	Query DSL

	
The flexible, powerful query language used by Elasticsearch






Each of these is a big subject in its own right, and we explain them in
detail in Part II. The chapters in this section introduce the
basic concepts of all three—just enough to help you to get an overall
understanding of how search works.


We will start by explaining the search API in its simplest form.


Test Data

The documents that we will use for test purposes in this chapter can be found
in this gist: https://gist.github.com/clintongormley/8579281.


You can copy the commands and paste them into your shell in order to follow
along with this chapter.


Alternatively, if you’re in the online version of this book, you can click here to open in Sense (sense_widget.html?snippets/050_Search/Test_data.json).










The Empty Search


The most basic form of the search API is the empty search, which doesn’t
specify any query but simply returns all documents in all indices in the
cluster:


GET /_search


The response (edited for brevity) looks something like this:


{
   "hits" : {
      "total" :       14,
      "hits" : [
        {
          "_index":   "us",
          "_type":    "tweet",
          "_id":      "7",
          "_score":   1,
          "_source": {
             "date":    "2014-09-17",
             "name":    "John Smith",
             "tweet":   "The Query DSL is really powerful and flexible",
             "user_id": 2
          }
       },
        ... 9 RESULTS REMOVED ...
      ],
      "max_score" :   1
   },
   "took" :           4,
   "_shards" : {
      "failed" :      0,
      "successful" :  10,
      "total" :       10
   },
   "timed_out" :      false
}










hits


The most important section of the response is hits, which contains the
total number of documents that matched our query, and a hits array
containing the first 10 of those matching documents—the results.


Each result in the hits array contains the _index, _type, and _id of
the document, plus the _source field.  This means that the whole document is
immediately available to us directly from the search results. This is unlike
other search engines, which return just the document ID, requiring you to fetch
the document itself in a separate step.


Each element also has a _score.  This is the relevance score, which is a
measure of how well the document matches the query.  By default, results are
returned with the most relevant documents first; that is, in descending order
of _score. In this case, we didn’t specify any query, so all documents are
equally relevant, hence the neutral _score of 1 for all results.


The max_score value is the highest _score of any document that matches our
query.

















took


The took value tells us how many milliseconds the entire search request took
to execute.

















shards


The _shards element tells us the total number of shards that were involved
in the query and, of them, how many were successful and how many failed.
We wouldn’t normally expect shards to fail, but it can happen. If we were to
suffer a major disaster in which we lost both the primary and the replica copy
of the same shard, there would be no copies of that shard available to respond
to search requests. In this case, Elasticsearch would report the shard as
failed, but continue to return results from the remaining shards.

















timeout


The timed_out value tells us whether the query timed out.  By
default, search requests do not time out.  If low response times are more
important to you than complete results, you can specify a timeout as 10
or 10ms (10 milliseconds), or 1s (1 second):


GET /_search?timeout=10ms


Elasticsearch will return any results that it has managed to gather from
each shard before the requests timed out.

Warning

It should be noted that this timeout does not halt the execution of the
query; it merely tells the coordinating node to return the results collected
so far and to close the connection.  In the background, other shards may
still be processing the query even though results have been sent.


Use the time-out because it is important to your SLA, not because you want
to abort the execution of long-running queries.


























Multi-index, Multitype


Did you notice that the results from the preceding empty search
contained documents of different types—user and tweet—from two
different indices—us and gb?


By not limiting our search to a particular index or type, we have searched
across all documents in the cluster. Elasticsearch forwarded the search
request in parallel to a primary or replica of every shard in the cluster,
gathered the results to select the overall top 10, and returned them to us.


Usually, however, you will want to search within one or more specific indices,
and probably one or more specific types. We can do this by specifying the
index and type in the URL, as follows:


	/_search

	
Search all types in all indices



	/gb/_search

	
Search all types in the gb index



	/gb,us/_search

	
Search all types in the gb and us indices



	/g*,u*/_search

	
Search all types in any indices beginning with g or beginning with u



	/gb/user/_search

	
Search type user in the gb index



	/gb,us/user,tweet/_search

	
Search types user and tweet in the gb and us indices



	/_all/user,tweet/_search

	
Search types user and tweet in all indices






When you search within a single index, Elasticsearch forwards the search
request to a primary or replica of every shard in that index, and then gathers the
results from each shard. Searching within multiple indices works in exactly
the same way—there are just more shards involved.

Tip

Searching one index that has five primary shards is exactly equivalent to
searching five indices that have one primary shard each.




Later, you will see how this simple fact makes it easy to scale flexibly
as your requirements change.

















Pagination


Our preceding empty search told us that 14 documents in the
cluster match our (empty) query.  But there were only 10 documents in
the hits array.  How can we see the other documents?


In the same way as SQL uses the LIMIT keyword to return a single “page” of
results, Elasticsearch accepts the from and size parameters:


	size

	
Indicates the number of results that should be returned, defaults to 10



	from

	
Indicates the number of initial results that should be skipped, defaults to 0






If you wanted to show five results per page, then pages 1 to 3
could be requested as follows:


GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10


Beware of paging too deep or requesting too many results at once. Results are
sorted before being returned. But remember that a search request usually spans
multiple shards. Each shard generates its own sorted results, which then need
to be sorted centrally to ensure that the overall order is correct.


Deep Paging in Distributed Systems

To understand why deep paging is problematic, let’s imagine that we are
searching within a single index with five primary shards.  When we request the
first page of results (results 1 to 10), each shard produces its own top 10
results and returns them to the requesting node, which then sorts all 50
results in order to select the overall top 10.


Now imagine that we ask for page 1,000—results 10,001 to 10,010. Everything
works in the same way except that each shard has to produce its top 10,010
results. The requesting node then sorts through all 50,050 results and
discards 50,040 of them!


You can see that, in a distributed system, the cost of sorting results
grows exponentially the deeper we page.  There is a good reason
that web search engines don’t return more than 1,000 results for any query.



Tip
In “Reindexing Your Data” we explain how you can retrieve large numbers of
documents efficiently.


















Search Lite


There are two forms of the search API: a “lite” query-string version
that expects all its parameters to be passed in the query string, and the full
request body version that expects a JSON request body and uses a
rich search language called the query DSL.


The query-string search is useful for running ad hoc queries from the
command line. For instance, this query finds all documents of type tweet that
contain the word elasticsearch in the tweet field:


GET /_all/tweet/_search?q=tweet:elasticsearch


The next query looks for john in the name field and mary in the
tweet field. The actual query is just

+name:john +tweet:mary


but the percent encoding needed for query-string parameters makes it appear
more cryptic than it really is:


GET /_search?q=%2Bname%3Ajohn+%2Btweet%3Amary


The + prefix indicates conditions that must be satisfied for our query to
match. Similarly a - prefix would indicate conditions that must not
match.  All conditions without a + or - are optional—the more that match,
the more relevant the document.










The _all Field


This simple search returns all documents that contain the word mary:


GET /_search?q=mary


In the previous examples, we searched for words in the tweet or
name fields. However, the results from this query mention mary in
three fields:



	
A user whose name is Mary



	
Six tweets by Mary



	
One tweet directed at @mary






How has Elasticsearch managed to find results in three different fields?


When you index a document, Elasticsearch takes the string values of all of
its fields and concatenates them into one big string, which it indexes as
the special _all field. For example, when we index this document:


{
    "tweet":    "However did I manage before Elasticsearch?",
    "date":     "2014-09-14",
    "name":     "Mary Jones",
    "user_id":  1
}


it’s as if we had added an extra field called _all with this value:


"However did I manage before Elasticsearch? 2014-09-14 Mary Jones 1"


The query-string search uses the _all field unless another
field name has been specified.

Tip
The _all field is a useful feature while you are getting started with
a new application. Later, you will find that you have more control over
your search results if you query specific fields instead of the _all
field.  When the _all field is no longer useful to you, you can
disable it, as explained in “Metadata: _all Field”.


















More Complicated Queries


The next query searches for tweets, using the following criteria:



	
The name field contains mary or john



	
The date is greater than 2014-09-10



	
The _all field contains either of the words aggregations or geo






+name:(mary john) +date:>2014-09-10 +(aggregations geo)


As a properly encoded query string, this looks like the slightly less
readable result:


?q=%2Bname%3A(mary+john)+%2Bdate%3A%3E2014-09-10+%2B(aggregations+geo)


As you can see from the preceding examples, this lite query-string search is
surprisingly powerful. Its query syntax, which is explained in detail in the
Query String Syntax
reference docs, allows us to express quite complex queries succinctly. This
makes it great for throwaway queries from the command line or during
development.


However, you can also see that its terseness can make it cryptic and
difficult to debug. And it’s fragile—a slight syntax error in the query
string, such as a misplaced -, :, /, or ", and it will return an error
instead of results.


Finally, the query-string search allows any user to run potentially slow, heavy
queries on any field in your index, possibly exposing private information or
even bringing your cluster to its knees!

Tip

For these reasons, we don’t recommend exposing query-string searches directly to
your users, unless they are power users who can be trusted with your data and
with your cluster.




Instead, in production we usually rely on the full-featured request body
search API, which does all of this, plus a lot more. Before we get there,
though, we first need to take a look at how our data is indexed in
Elasticsearch.



















Chapter 6. Mapping and Analysis



While playing around with the data in our index, we notice something odd.
Something seems to be broken: we have 12 tweets in our indices, and only one
of them contains the date 2014-09-15, but have a look at the total hits
for the following queries:


GET /_search?q=2014              # 12 results
GET /_search?q=2014-09-15        # 12 results !
GET /_search?q=date:2014-09-15   # 1  result
GET /_search?q=date:2014         # 0  results !


Why does querying the _all field for the full date
return all tweets, and querying the date field for just the year return no
results? Why do our results differ when searching within the _all field or
the date field?


Presumably, it is because the way our data has been indexed in the _all
field is different from how it has been indexed in the date field.
So let’s take a look at how Elasticsearch has interpreted our document
structure, by requesting the mapping (or schema definition)
for the tweet type in the gb index:


GET /gb/_mapping/tweet


This gives us the following:


{
   "gb": {
      "mappings": {
         "tweet": {
            "properties": {
               "date": {
                  "type": "date",
                  "format": "dateOptionalTime"
               },
               "name": {
                  "type": "string"
               },
               "tweet": {
                  "type": "string"
               },
               "user_id": {
                  "type": "long"
               }
            }
         }
      }
   }
}


Elasticsearch has dynamically generated a mapping for us, based on what it
could guess about our field types. The response shows us that the date field
has been recognized as a field of type date. The _all field isn’t
mentioned because it is a default field, but we know that the _all field is
of type string.


So fields of type date and fields of type string are indexed differently,
and can thus be searched differently.  That’s not entirely surprising.
You might expect that each of the core data types—strings, numbers, Booleans,
and dates—might be indexed slightly differently. And this is true:
there are slight differences.


But by far the biggest difference is between fields that represent
exact values (which can include string fields) and fields that
represent full text. This distinction is really important—it’s the thing
that separates a search engine from all other databases.








Exact Values Versus Full Text


Data in Elasticsearch can be broadly divided into two types:
exact values and full text.


Exact values are exactly what they sound like.  Examples are a date or a
user ID, but can also include exact strings such as a username or an email
address. The exact value Foo is not the same as the exact value foo.
The exact value 2014 is not the same as the exact value 2014-09-15.


Full text, on the other hand, refers to textual data—usually written in
some human language — like the text of a tweet or the body of an email.

Note

Full text is often referred to as unstructured data, which is a misnomer—natural language is highly structured. The problem is that the rules of
natural languages are complex, which makes them difficult for computers to
parse correctly. For instance, consider this sentence:

May is fun but June bores me.


Does it refer to months or to people?




Exact values are easy to query. The decision is binary; a value either
matches the query, or it doesn’t. This kind of query is easy to express with
SQL:


WHERE name    = "John Smith"
  AND user_id = 2
  AND date    > "2014-09-15"


Querying full-text data is much more subtle. We are not just asking, “Does
this document match the query” but “How well does this document match the
query?” In other words, how relevant is this document to the given query?


We seldom want to match the whole full-text field exactly.  Instead, we want
to search within text fields. Not only that, but we expect search to
understand our intent:



	
A search for UK should also return documents mentioning the United
Kingdom.



	
A search for jump should also match jumped, jumps, jumping,
and perhaps even leap.



	
johnny walker should match Johnnie Walker, and johnnie depp
should match Johnny Depp.



	
fox news hunting should return stories about hunting on Fox News,
while fox hunting news should return news stories about fox hunting.






To facilitate these types of queries on full-text fields,
Elasticsearch first analyzes the text, and then uses the results to build
an inverted index. We will discuss the inverted index and the
analysis process in the next two sections.

















Inverted Index


Elasticsearch uses a structure called an inverted index, which is designed
to allow very fast full-text searches. An inverted index consists of a list
of all the unique words that appear in any document, and for each word, a list
of the documents in which it appears.


For example, let’s say we have two documents, each with a content field
containing the following:


	
The quick brown fox jumped over the lazy dog



	
Quick brown foxes leap over lazy dogs in summer







To create an inverted index, we first split the content field of each
document into separate words (which we call terms, or tokens), create a
sorted list of all the unique terms, and then list in which document each term
appears. The result looks something like this:

Term      Doc_1  Doc_2
-------------------------
Quick   |       |  X
The     |   X   |
brown   |   X   |  X
dog     |   X   |
dogs    |       |  X
fox     |   X   |
foxes   |       |  X
in      |       |  X
jumped  |   X   |
lazy    |   X   |  X
leap    |       |  X
over    |   X   |  X
quick   |   X   |
summer  |       |  X
the     |   X   |
------------------------


Now, if we want to search for quick brown, we just need to find the
documents in which each term appears:

Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
quick   |   X   |
------------------------
Total   |   2   |  1


Both documents match, but the first document has more matches than the second.
If we apply a naive similarity algorithm that just counts the number of
matching terms, then we can say that the first document is a better match—is more relevant to our query—than the second document.


But there are a few problems with our current inverted index:



	
Quick and quick appear as separate terms, while the user probably
thinks of them as the same word.



	
fox and foxes are pretty similar, as are dog and dogs;
They share the same root word.



	
jumped and leap, while not from the same root word, are similar
in meaning. They are synonyms.






With the preceding index, a search for +Quick +fox wouldn’t match any
documents. (Remember, a preceding + means that the word must be present.)
Both the term Quick and the term fox have to be in the same document
in order to satisfy the query, but the first doc contains quick fox and
the second doc contains Quick foxes.


Our user could reasonably expect both documents to match the query. We can do
better.


If we normalize the terms into a standard format, then we can find documents
that contain terms that are not exactly the same as the user requested, but
are similar enough to still be relevant. For instance:



	
Quick can be lowercased to become quick.



	
foxes can be stemmed--reduced to its root form—to
become fox. Similarly, dogs could be stemmed to dog.



	
jumped and leap are synonyms and can be indexed as just the
single term jump.






Now the index looks like this:

Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
dog     |   X   |  X
fox     |   X   |  X
in      |       |  X
jump    |   X   |  X
lazy    |   X   |  X
over    |   X   |  X
quick   |   X   |  X
summer  |       |  X
the     |   X   |  X
------------------------


But we’re not there yet. Our search for +Quick +fox would still fail,
because we no longer have the exact term Quick in our index. However, if
we apply the same normalization rules that we used on the content field to
our query string, it would become a query for +quick +fox, which would
match both documents!

Note
This is very important. You can find only terms that exist in your
index, so both the indexed text and the query string must be normalized
into the same form.



This process of tokenization and normalization is called analysis, which we
discuss in the next section.

















Analysis and Analyzers


Analysis is a process that consists of the following:



	
First, tokenizing a block of text into
individual terms suitable for use in an inverted index,



	
Then normalizing these terms into a standard form to improve their
“searchability,” or recall






This job is performed by analyzers. An analyzer is really just a wrapper
that combines three functions into a single package:


	Character filters

	
First, the string is passed through any character filters in turn. Their
job is to tidy up the string before tokenization. A character filter could
be used to strip out HTML, or to convert & characters to the word
and.



	Tokenizer

	
Next, the string is tokenized into individual terms by a tokenizer. A
simple tokenizer might split the text into terms whenever it encounters
whitespace or punctuation.



	Token filters

	
Last, each term is passed through any token filters in turn, which can
change terms (for example, lowercasing Quick), remove terms (for example, stopwords such as
a, and, the) or add terms (for example, synonyms like jump and
leap).






Elasticsearch provides many character filters, tokenizers, and token filters
out of the box. These can be combined to create custom analyzers suitable
for different purposes. We discuss these in detail in “Custom Analyzers”.










Built-in Analyzers


However, Elasticsearch also ships with prepackaged analyzers that
you can use directly. We list the most important ones next and, to demonstrate
the difference in behavior, we show what terms each would produce
from this string:

"Set the shape to semi-transparent by calling set_trans(5)"


	Standard analyzer

	
The standard analyzer is the default analyzer that Elasticsearch uses. It is
the best general choice for analyzing text that may be in any language. It
splits the text on word boundaries, as defined by the
Unicode Consortium, and removes most
punctuation. Finally, it lowercases all terms. It would produce

set, the, shape, to, semi, transparent, by, calling, set_trans, 5



	Simple analyzer

	
The simple analyzer splits the text on anything that isn’t a letter,
and lowercases the terms. It would produce

set, the, shape, to, semi, transparent, by, calling, set, trans



	Whitespace analyzer

	
The whitespace analyzer splits the text on whitespace. It doesn’t
lowercase. It would produce

Set, the, shape, to, semi-transparent, by, calling, set_trans(5)



	Language analyzers

	
Language-specific analyzers are available for many languages. They are able to
take the peculiarities of the specified language into account. For instance,
the english analyzer comes with a set of English stopwords (common words
like and or the that don’t have much impact on relevance), which it
removes. This analyzer also is able to stem English words because it understands the
rules of English grammar.


The english analyzer would produce the following:

set, shape, semi, transpar, call, set_tran, 5


Note how transparent, calling, and set_trans have been stemmed to
their root form.





















When Analyzers Are Used


When we index a document, its full-text fields are analyzed into terms that
are used to create the inverted index.  However, when we search on a full-text field,  we need to pass the query string through the same analysis
process, to ensure that we are searching for terms in the same form as those
that exist in the index.


Full-text queries, which we discuss later, understand how each field is
defined, and so they can do the right thing:



	
When you query a full-text field, the query will apply the same analyzer
to the query string to produce the correct list of terms to search for.



	
When you query an exact-value field, the query will not analyze the
query string, but instead search for the exact value that you have
specified.






Now you can understand why the queries that we demonstrated at the
start of this chapter return what they do:



	
The date field contains an exact value: the single term 2014-09-15.



	
The _all field is a full-text field, so the analysis process has
converted the date into the three terms: 2014, 09, and 15.






When we query the _all field for 2014, it matches all 12 tweets, because
all of them contain the term 2014:


GET /_search?q=2014              # 12 results


When we query the _all field for 2014-09-15, it first analyzes the query
string to produce a query that matches any of the terms 2014, 09, or
15. This also matches all 12 tweets, because all of them contain the term
2014:


GET /_search?q=2014-09-15        # 12 results !


When we query the date field for 2014-09-15, it looks for that exact
date, and finds one tweet only:


GET /_search?q=date:2014-09-15   # 1  result


When we query the date field for 2014, it finds no documents
because none contain that exact date:


GET /_search?q=date:2014         # 0  results !

















Testing Analyzers


Especially when you are new to Elasticsearch, it is sometimes difficult to
understand what is actually being tokenized and stored into your index.  To
better understand what is going on, you can use the analyze API to see how
text is analyzed. Specify which analyzer to use in the query-string
parameters,  and the text to analyze in the body:


GET /_analyze?analyzer=standard
Text to analyze


Each element in the result represents a single term:


{
   "tokens": [
      {
         "token":        "text",
         "start_offset": 0,
         "end_offset":   4,
         "type":         "<ALPHANUM>",
         "position":     1
      },
      {
         "token":        "to",
         "start_offset": 5,
         "end_offset":   7,
         "type":         "<ALPHANUM>",
         "position":     2
      },
      {
         "token":        "analyze",
         "start_offset": 8,
         "end_offset":   15,
         "type":         "<ALPHANUM>",
         "position":     3
      }
   ]
}


The token is the actual term that will be stored in the index. The
position indicates the order in which the terms appeared in the original
text. The start_offset and end_offset indicate the character positions
that the original word occupied in the original string.

Tip
The type values like <ALPHANUM> vary per analyzer and can be ignored.
The only place that they are used in Elasticsearch is in the
keep_types token filter.



The analyze API is a useful tool for understanding what is happening
inside Elasticsearch indices, and we will talk more about it as we progress.

















Specifying Analyzers


When Elasticsearch detects a new string field in your documents, it
automatically configures it as a full-text string field and analyzes it with
the standard analyzer.


You don’t always want this. Perhaps you want to apply a different analyzer
that suits the language your data is in. And sometimes you want a
string field to be just a string field—to index the exact value that
you pass in, without any analysis, such as a string user ID or an
internal status field or tag.


To achieve this, we have to configure these fields manually
by specifying the mapping.
























Mapping


In order to be able to treat date fields as dates, numeric fields as numbers,
and string fields as full-text or exact-value strings, Elasticsearch needs to
know what type of data each field contains.  This information is contained in
the mapping.


As explained in Chapter 3, each document in an index has a type.
Every type has its own mapping, or schema definition. A mapping
defines the fields within a type, the datatype for each field,
and how the field should be handled by Elasticsearch. A mapping is also used
to configure metadata associated with the type.


We discuss mappings in detail in “Types and Mappings”. In this section, we’re going
to look at just enough to get you started.










Core Simple Field Types


Elasticsearch supports the following simple field types:



	
String: string



	
Whole number: byte, short, integer, long



	
Floating-point: float, double



	
Boolean: boolean



	
Date: date






When you index a document that contains a new field—one previously not
seen—Elasticsearch will use dynamic mapping to try
to guess the field type from the basic datatypes available in JSON,
using the following rules:


	JSON type                       

	
Field type



	Boolean: true or false         

	
boolean



	Whole number: 123                

	
long



	Floating point: 123.45           

	
double



	String, valid date: 2014-09-15 

	
date



	String: foo bar                

	
string





Note
This means that if you index a number in quotes ("123"), it will be
mapped as type string, not type long. However, if the field is
already mapped as type long, then Elasticsearch will try to convert
the string into a long, and throw an exception if it can’t.


















Viewing the Mapping


We can view the mapping that Elasticsearch has for one or more types in one or
more indices by using the /_mapping endpoint. At the start
of this chapter, we already retrieved the mapping for type tweet in index
gb:


GET /gb/_mapping/tweet


This shows us the mapping for the fields (called properties) that
Elasticsearch generated dynamically from the documents that we indexed:


{
   "gb": {
      "mappings": {
         "tweet": {
            "properties": {
               "date": {
                  "type": "date",
                  "format": "dateOptionalTime"
               },
               "name": {
                  "type": "string"
               },
               "tweet": {
                  "type": "string"
               },
               "user_id": {
                  "type": "long"
               }
            }
         }
      }
   }
}

Tip

Incorrect mappings, such as having an age field mapped as type string
instead of integer, can produce confusing results to your queries.


Instead of assuming that your mapping is correct, check it!



















Customizing Field Mappings


While the basic field datatypes are sufficient for many cases, you will often
need to customize the mapping for individual fields, especially string fields.
Custom mappings allow you to do the following:



	
Distinguish between full-text string fields and exact value string fields



	
Use language-specific analyzers



	
Optimize a field for partial matching



	
Specify custom date formats



	
And much more






The most important attribute of a field is the type. For fields
other than string fields, you will seldom need to map anything other
than type:


{
    "number_of_clicks": {
        "type": "integer"
    }
}


Fields of type string are, by default, considered to contain full text.
That is, their value will be passed through an analyzer before being indexed,
and a full-text query on the field will pass the query string through an
analyzer before searching.


The two most important mapping attributes for string fields are
index and analyzer.












index


The index attribute controls how the string will be indexed. It
can contain one of three values:


	analyzed

	
First analyze the string and then index it.  In other words, index this field as full text.



	not_analyzed

	
Index this field, so it is searchable, but index the value exactly as specified. Do not analyze it.



	no

	
Don’t index this field at all. This field will not be searchable.






The default value of index for a string field is analyzed.  If we
want to map the field as an exact value, we need to set it to
not_analyzed:


{
    "tag": {
        "type":     "string",
        "index":    "not_analyzed"
    }
}

Note

The other simple types (such as long, double, date etc) also accept the
index parameter, but the only relevant values are no and not_analyzed,
as their values are never analyzed.



















analyzer


For analyzed string fields, use the analyzer attribute to
specify which analyzer to apply both at search time and at index time. By
default, Elasticsearch uses the standard analyzer, but you can change this
by specifying one of the built-in analyzers, such as
whitespace, simple, or english:


{
    "tweet": {
        "type":     "string",
        "analyzer": "english"
    }
}


In “Custom Analyzers”, we show you how to define and use custom analyzers
as well.






















Updating a Mapping


You can specify the mapping for a type when you first create an index.
Alternatively, you can add the mapping for a new type (or update the mapping
for an existing type) later, using the /_mapping endpoint.

Note

Although you can add to an existing mapping, you can’t change it.  If a field
already exists in the mapping, the data from that
field probably has already been indexed.  If you were to change the field mapping, the already indexed data would be wrong and would not be properly searchable.




We can update a mapping to add a new field, but we can’t change an existing
field from analyzed to not_analyzed.


To demonstrate both ways of specifying mappings, let’s first delete the gb
index:


DELETE /gb


Then create a new index, specifying that the tweet field should use
the english analyzer:


PUT /gb [image: 1]
{
  "mappings": {
    "tweet" : {
      "properties" : {
        "tweet" : {
          "type" :    "string",
          "analyzer": "english"
        },
        "date" : {
          "type" :   "date"
        },
        "name" : {
          "type" :   "string"
        },
        "user_id" : {
          "type" :   "long"
        }
      }
    }
  }
}


	[image: 1]

	This creates the index with the mappings specified in the body.





Later on, we decide to add a new not_analyzed text field called tag to the
tweet mapping, using the _mapping endpoint:


PUT /gb/_mapping/tweet
{
  "properties" : {
    "tag" : {
      "type" :    "string",
      "index":    "not_analyzed"
    }
  }
}


Note that we didn’t need to list all of the existing fields again, as we can’t
change them anyway.  Our new field has been merged into the existing mapping.

















Testing the Mapping


You can use the analyze API to test the mapping for string fields by
name. Compare the output of these two requests:


GET /gb/_analyze?field=tweet
Black-cats [image: 1]

GET /gb/_analyze?field=tag
Black-cats [image: 1]


	[image: 1]

	The text we want to analyze is passed in the body.





The tweet field produces the two terms black and cat, while the
tag field produces the single term Black-cats. In other words, our
mapping is working correctly.
























Complex Core Field Types


Besides the simple scalar datatypes that we have mentioned, JSON also
has null values, arrays, and objects, all of which are supported by
Elasticsearch.










Multivalue Fields


It is quite possible that we want our tag field to contain more
than one tag. Instead of a single string, we could index an array of tags:


{ "tag": [ "search", "nosql" ]}


There is no special mapping required for arrays. Any field can contain zero,
one, or more values, in the same way as a full-text field is analyzed to
produce multiple terms.


By implication, this means that all the values of an array must be
of the same datatype.  You can’t mix dates with strings. If you create
a new field by indexing an array, Elasticsearch will use the
datatype of the first value in the array to determine the type of the
new field.

Note

When you get a document back from Elasticsearch, any arrays will be in the
same order as when you indexed the document.  The _source field that you get
back contains exactly the same JSON document that you indexed.


However, arrays are indexed—made searchable—as multivalue fields,
which are unordered.  At search time, you can’t refer to “the first element”
or “the last element.”  Rather, think of an array as a bag of values.




















Empty Fields


Arrays can, of course, be empty. This is the equivalent of having zero
values. In fact, there is no way of storing a null value in Lucene, so
a field with a null value is also considered to be an empty
field.


These four fields would all be considered to be empty, and would not be
indexed:


"null_value":               null,
"empty_array":              [],
"array_with_null_value":    [ null ]

















Multilevel Objects


The last native JSON datatype that we need to discuss is the object — known in other languages as a hash, hashmap, dictionary or
associative array.


Inner objects are often used to embed one entity or object inside
another. For instance, instead of having fields called user_name
and user_id inside our tweet document, we could write it as follows:


{
    "tweet":            "Elasticsearch is very flexible",
    "user": {
        "id":           "@johnsmith",
        "gender":       "male",
        "age":          26,
        "name": {
            "full":     "John Smith",
            "first":    "John",
            "last":     "Smith"
        }
    }
}

















Mapping for Inner Objects


Elasticsearch will detect new object fields dynamically and map them as
type object, with each inner field listed under properties:


{
  "gb": {
    "tweet": { [image: 1]
      "properties": {
        "tweet":            { "type": "string" },
        "user": { [image: 2]
          "type":             "object",
          "properties": {
            "id":           { "type": "string" },
            "gender":       { "type": "string" },
            "age":          { "type": "long"   },
            "name":   { [image: 2]
              "type":         "object",
              "properties": {
                "full":     { "type": "string" },
                "first":    { "type": "string" },
                "last":     { "type": "string" }
              }
            }
          }
        }
      }
    }
  }
}


	[image: 1]

	Root object


	[image: 2]

	Inner objects





The mapping for the user and name fields has a similar structure
to the mapping for the tweet type itself.  In fact, the type mapping
is just a special type of object mapping, which we refer to as the
root object.  It is just the same as any other object, except that it has
some special top-level fields for document metadata, such as _source,
and the _all field.

















How Inner Objects are Indexed


Lucene doesn’t understand inner objects. A Lucene document consists of a flat
list of key-value pairs.  In order for Elasticsearch to index inner objects
usefully, it converts our document into something like this:


{
    "tweet":            [elasticsearch, flexible, very],
    "user.id":          [@johnsmith],
    "user.gender":      [male],
    "user.age":         [26],
    "user.name.full":   [john, smith],
    "user.name.first":  [john],
    "user.name.last":   [smith]
}


Inner fields can be referred to by name (for example, first). To distinguish
between two fields that have the same name, we can use the full path (for example, user.name.first) or even the type name plus
the path (tweet.user.name.first).

Note
In the preceding simple flattened document, there is no field called user
and no field called user.name.  Lucene indexes only scalar or simple values,
not complex data structures.


















Arrays of Inner Objects


Finally, consider how an array containing inner objects would be indexed.
Let’s say we have a followers array that looks like this:


{
    "followers": [
        { "age": 35, "name": "Mary White"},
        { "age": 26, "name": "Alex Jones"},
        { "age": 19, "name": "Lisa Smith"}
    ]
}


This document will be flattened as we described previously, but the result will
look like this:


{
    "followers.age":    [19, 26, 35],
    "followers.name":   [alex, jones, lisa, smith, mary, white]
}


The correlation between {age: 35} and {name: Mary White} has been lost as
each multivalue field is just a bag of values, not an ordered array.  This is
sufficient for us to ask, “Is there a follower who is 26 years old?”


But we can’t get an accurate answer to this: “Is there a follower who is 26 years old and who is called Alex Jones?”


Correlated inner objects, which are able to answer queries like these,
are called nested objects, and we cover them later, in
Chapter 41.



















Chapter 7. Full-Body Search



Search lite—a query-string search—is useful for ad
hoc queries from the command line. To harness the full power of search,
however, you should use the request body search API, so called because
most parameters are passed in the HTTP request body instead of in the query
string.


Request body search—henceforth known as search—not only handles
the query itself, but also allows you to return highlighted snippets from your
results, aggregate analytics across all results or subsets of results, and
return did-you-mean suggestions, which will help guide your users to the
best results quickly.








Empty Search


Let’s start with the simplest form of the search API, the empty search,
which returns all documents in all indices:


GET /_search
{} [image: 1]


	[image: 1]

	This is an empty request body.





Just as with a query-string search, you can search on one, many, or _all
indices, and one, many, or all types:


GET /index_2014*/type1,type2/_search
{}


And you can use the from and size parameters for pagination:


GET /_search
{
  "from": 30,
  "size": 10
}


A GET Request with a Body?

The HTTP libraries of certain languages (notably JavaScript) don’t allow GET
requests to have a request body.  In fact, some users are suprised that GET
requests are ever allowed to have a body.


The truth is that RFC 7231—the
RFC that deals with HTTP semantics and content—does not define what should
happen to a GET request with a body!  As a result, some HTTP servers allow
it, and some—especially caching proxies—don’t.


The authors of Elasticsearch prefer using GET for a search request because
they feel that it describes the action—retrieving information—better
than the POST verb.  However, because GET with a request body is not
universally supported, the search API also accepts POST requests:


POST /_search
{
  "from": 30,
  "size": 10
}


The same rule applies to any other GET API that requires a request body.




We present aggregations in depth in Part IV, but for now,
we’re going to focus just on the query.


Instead of the cryptic query-string approach, a request body search allows us
to write queries by using the query domain-specific language, or query DSL.


















Query DSL


The query DSL is a flexible, expressive search language that Elasticsearch
uses to expose most of the power of Lucene through a simple JSON interface. It
is what you should be using to write your queries in production. It makes your
queries more flexible, more precise, easier to read, and easier to debug.


To use the Query DSL, pass a query in the query parameter:


GET /_search
{
    "query": YOUR_QUERY_HERE
}


The empty search—{}—is functionally equivalent to using the
match_all query clause, which, as the name suggests, matches all documents:


GET /_search
{
    "query": {
        "match_all": {}
    }
}










Structure of a Query Clause


A query clause typically has this structure:


{
    QUERY_NAME: {
        ARGUMENT: VALUE,
        ARGUMENT: VALUE,...
    }
}


If it references one particular field, it has this structure:


{
    QUERY_NAME: {
        FIELD_NAME: {
            ARGUMENT: VALUE,
            ARGUMENT: VALUE,...
        }
    }
}


For instance, you can use a match query clause to find tweets that
mention elasticsearch in the tweet field:


{
    "match": {
        "tweet": "elasticsearch"
    }
}


The full search request would look like this:


GET /_search
{
    "query": {
        "match": {
            "tweet": "elasticsearch"
        }
    }
}

















Combining Multiple Clauses


Query clauses are simple building blocks that can be combined with each
other to create complex queries. Clauses can be as follows:



	
Leaf clauses (like the match clause) that are used to
compare a field (or fields) to a query string.



	
Compound clauses that are used to combine other query clauses.
For instance, a bool clause allows you to combine other clauses that
either must match,  must_not match, or should match if possible:






{
    "bool": {
        "must":     { "match": { "tweet": "elasticsearch" }},
        "must_not": { "match": { "name":  "mary" }},
        "should":   { "match": { "tweet": "full text" }}
    }
}


It is important to note that a compound clause can combine any other
query clauses, including other compound clauses. This means that compound
clauses can be nested within each other, allowing the expression
of very complex logic.


As an example, the following query looks for emails that contain
business opportunity and should either be starred, or be both in the Inbox
and not marked as spam:


{
    "bool": {
        "must": { "match":      { "email": "business opportunity" }},
        "should": [
             { "match":         { "starred": true }},
             { "bool": {
                   "must":      { "folder": "inbox" }},
                   "must_not":  { "spam": true }}
             }}
        ],
        "minimum_should_match": 1
    }
}


Don’t worry about the details of this example yet; we will explain in
full later. The important thing to take away is that a compound query
clause can combine multiple clauses—both leaf clauses and other
compound clauses—into a single query.
























Queries and Filters


Although we refer to the query DSL, in reality there are two DSLs: the
query DSL and the filter DSL. Query clauses and filter clauses are similar
in nature, but have slightly different purposes.


A filter asks a yes|no question of every document and is used
for fields that contain exact values:



	
Is the created date in the range 2013 - 2014?



	
Does the status field contain the term published?



	
Is the lat_lon field within 10km of a specified point?






A query is similar to a filter, but also asks the question:
How well does this document match?


A typical use for a query is to find documents



	
Best matching the words full text search



	
Containing the word run, but maybe also matching runs, running,
jog, or sprint



	
Containing the words quick, brown, and fox—the closer together they
are, the more relevant the document



	
Tagged with lucene,  search, or java—the more tags, the more
relevant the document






A query calculates how relevant each document is to the
query, and assigns it a relevance _score, which is later used to
sort matching documents by relevance. This concept of relevance is
well suited to full-text search, where there is seldom a completely
“correct” answer.










Performance Differences


The output from most filter clauses—a simple list of the documents that match
the filter—is quick to calculate and easy to cache in memory, using
only 1 bit per document. These cached filters can be reused
efficiently for subsequent requests.


Queries have to not only find matching documents, but also calculate how
relevant each document is, which typically makes queries heavier than filters.
Also, query results are not cachable.


Thanks to the inverted index, a simple query that matches just a few documents
may perform as well or better than a cached filter that spans millions
of documents.  In general, however, a cached filter will outperform a
query, and will do so consistently.


The goal of filters is to reduce the number of documents that have to
be examined by the query.

















When to Use Which


As a general rule, use query clauses for full-text search or
for any condition that should affect the relevance score, and
use filter clauses for everything else.
























Most Important Queries and Filters


While Elasticsearch comes with many queries and filters, you will use
just a few frequently. We discuss them in much greater
detail in Part II but next we give you a quick introduction to
the most important queries and filters.










term Filter


The term filter is used to filter by exact values, be they numbers, dates,
Booleans, or not_analyzed exact-value string fields:


{ "term": { "age":    26           }}
{ "term": { "date":   "2014-09-01" }}
{ "term": { "public": true         }}
{ "term": { "tag":    "full_text"  }}

















terms Filter


The terms filter is the same as the term filter, but allows you
to specify multiple values to match. If the field contains any of
the specified values, the document matches:


{ "terms": { "tag": [ "search", "full_text", "nosql" ] }}

















range Filter


The range filter allows you to find numbers or dates that fall into
a specified range:


{
    "range": {
        "age": {
            "gte":  20,
            "lt":   30
        }
    }
}


The operators that it accepts are as follows:


	gt

	
Greater than



	gte

	
Greater than or equal to



	lt

	
Less than



	lte

	
Less than or equal to





















exists and missing Filters


The exists and missing filters are used to find documents in which the
specified field either has one or more values (exists) or doesn’t have any
values (missing). It is similar in nature to IS_NULL (missing) and NOT
IS_NULL (exists)in SQL:


{
    "exists":   {
        "field":    "title"
    }
}


These filters are frequently used to apply a condition only if a field is
present, and to apply a different condition if it is missing.

















bool Filter


The bool filter is used to combine multiple filter clauses using
Boolean logic.  It accepts three parameters:


	must

	
These clauses must match, like and.



	must_not

	
These clauses must not match, like not.



	should

	
At least one of these clauses must match, like or.






Each of these parameters can accept a single filter clause or an array
of filter clauses:


{
    "bool": {
        "must":     { "term": { "folder": "inbox" }},
        "must_not": { "term": { "tag":    "spam"  }},
        "should": [
                    { "term": { "starred": true   }},
                    { "term": { "unread":  true   }}
        ]
    }
}

















match_all Query


The match_all query simply matches all documents. It is the default
query that is used if no query has been specified:


{ "match_all": {}}


This query is frequently used in combination with a filter—for instance, to
retrieve all emails in the inbox folder. All documents are considered to be
equally relevant, so they all receive a neutral _score of 1.

















match Query


The match query should be the standard query that you reach for whenever
you want to query for a full-text or exact value in almost any field.


If you run a match query against a full-text field, it will analyze
the query string by using the correct analyzer for that field before executing
the search:


{ "match": { "tweet": "About Search" }}


If you use it on a field containing an exact value, such as a number, a date,
a Boolean, or a not_analyzed string field, then it will search for that
exact value:


{ "match": { "age":    26           }}
{ "match": { "date":   "2014-09-01" }}
{ "match": { "public": true         }}
{ "match": { "tag":    "full_text"  }}

Tip
For exact-value searches, you probably want to use a filter instead of a
query, as a filter will be cached.



Unlike the query-string search that we showed in “Search Lite”, the match
query does not use a query syntax like +user_id:2 +tweet:search. It just
looks for the words that are specified. This means that it is safe to expose
to your users via a search field; you control what fields they can query, and
it is not prone to throwing syntax errors.

















multi_match Query


The multi_match query allows to run the same match query on multiple
fields:


{
    "multi_match": {
        "query":    "full text search",
        "fields":   [ "title", "body" ]
    }
}

















bool Query


The bool query, like the bool filter, is used to combine multiple
query clauses. However, there are some differences. Remember that while
filters give binary yes/no answers, queries calculate a relevance score
instead. The bool query combines the _score from each must or
should clause that matches. This query accepts the following parameters:


	must

	
Clauses that must match for the document to be included.



	must_not

	
Clauses that must not match for the document to be included.



	should

	
If these clauses match, they increase the _score;
             otherwise, they have no effect. They are simply used to refine
             the relevance score for each document.






The following query finds documents whose title field matches
the query string how to make millions and that are not marked
as spam.  If any documents are starred or are from 2014 onward,
they will rank higher than they would have otherwise. Documents that
match both conditions will rank even higher:


{
    "bool": {
        "must":     { "match": { "title": "how to make millions" }},
        "must_not": { "match": { "tag":   "spam" }},
        "should": [
            { "match": { "tag": "starred" }},
            { "range": { "date": { "gte": "2014-01-01" }}}
        ]
    }
}

Tip
If there are no must clauses, at least one should clause has to
match. However, if there is at least one must clause, no should clauses
are required to match.

























Combining Queries with Filters


Queries can be used in query context, and filters can be used
in filter context.  Throughout the Elasticsearch API, you will see parameters
with query or filter in the name.  These
expect a single argument containing either a single query or filter clause
respectively. In other words, they establish the
outer context as query context or filter context.


Compound query clauses can wrap other query clauses, and compound
filter clauses can wrap other filter clauses. However, it is often
useful to apply a filter to a query or, less frequently, to use a full-text query as a filter.


To do this, there are dedicated query clauses that wrap filter clauses, and
vice versa, thus allowing us to switch from one context to another. It is
important to choose the correct combination of query and filter clauses
to achieve your goal in the most efficient way.










Filtering a Query


Let’s say we have this query:


{ "match": { "email": "business opportunity" }}


We want to combine it with the following term filter, which will
match only documents that are in our inbox:


{ "term": { "folder": "inbox" }}


The search API accepts only a single query parameter, so we need
to wrap the query and the filter in another query, called the filtered
query:


{
    "filtered": {
        "query":  { "match": { "email": "business opportunity" }},
        "filter": { "term":  { "folder": "inbox" }}
    }
}


We can now pass this query to the query parameter of the search API:


GET /_search
{
    "query": {
        "filtered": {
            "query":  { "match": { "email": "business opportunity" }},
            "filter": { "term": { "folder": "inbox" }}
        }
    }
}

















Just a Filter


While in query context, if you need to use a filter without a query (for
instance, to match all emails in the inbox), you can just omit the
query:


GET /_search
{
    "query": {
        "filtered": {
            "filter":   { "term": { "folder": "inbox" }}
        }
    }
}


If a query is not specified it defaults to using the match_all query, so
the preceding query is equivalent to the following:


GET /_search
{
    "query": {
        "filtered": {
            "query":    { "match_all": {}},
            "filter":   { "term": { "folder": "inbox" }}
        }
    }
}

















A Query as a Filter


Occasionally, you will want to use a query while you are in filter context.
This can be achieved with the query filter, which just wraps a query. The following
example shows one way we could exclude emails that look like spam:


GET /_search
{
    "query": {
        "filtered": {
            "filter":   {
                "bool": {
                    "must":     { "term":  { "folder": "inbox" }},
                    "must_not": {
                        "query": { [image: 1]
                            "match": { "email": "urgent business proposal" }
                        }
                    }
                }
            }
        }
    }
}


	[image: 1]

	Note the query filter, which is allowing us to use the match query
inside a bool filter.




Note
You seldom need to use a query as a filter, but we have included it for
completeness’ sake.  The only time you may need it is when you need to use
full-text matching while in filter context.

























Validating Queries


Queries can become quite complex and, especially when combined with
different analyzers and field mappings, can become a bit difficult to follow.
The validate-query API can be used to check whether a query is valid.


GET /gb/tweet/_validate/query
{
   "query": {
      "tweet" : {
         "match" : "really powerful"
      }
   }
}


The response to the preceding validate request tells us that the query is
invalid:


{
  "valid" :         false,
  "_shards" : {
    "total" :       1,
    "successful" :  1,
    "failed" :      0
  }
}










Understanding Errors


To find out why it is invalid, add the explain parameter to the query
string:


GET /gb/tweet/_validate/query?explain [image: 1]
{
   "query": {
      "tweet" : {
         "match" : "really powerful"
      }
   }
}


	[image: 1]

	The explain flag provides more information about why a query is
invalid.





Apparently, we’ve mixed up the type of query (match) with the name
of the field (tweet):


{
  "valid" :     false,
  "_shards" :   { ... },
  "explanations" : [ {
    "index" :   "gb",
    "valid" :   false,
    "error" :   "org.elasticsearch.index.query.QueryParsingException:
                 [gb] No query registered for [tweet]"
  } ]
}

















Understanding Queries


Using the explain parameter has the added advantage of returning
a human-readable description of the (valid) query, which can be useful for
understanding exactly how your query has been interpreted by Elasticsearch:


GET /_validate/query?explain
{
   "query": {
      "match" : {
         "tweet" : "really powerful"
      }
   }
}


An explanation is returned for each index that we query, because each
index can have different mappings and analyzers:


{
  "valid" :         true,
  "_shards" :       { ... },
  "explanations" : [ {
    "index" :       "us",
    "valid" :       true,
    "explanation" : "tweet:really tweet:powerful"
  }, {
    "index" :       "gb",
    "valid" :       true,
    "explanation" : "tweet:realli tweet:power"
  } ]
}


From the explanation, you can see how the match query for the query string
really powerful has been rewritten as two single-term queries against
the tweet field, one for each term.


Also, for the us index, the two terms are really and powerful, while
for the gb index, the terms are realli and power. The reason
for this is that we changed the tweet field in the gb index to use the
english analyzer.



















Chapter 9. Distributed Search Execution



Before moving on, we are going to take a detour and talk about how search is
executed in a distributed environment.  It is a bit more complicated than the
basic create-read-update-delete (CRUD) requests that we discussed in
Chapter 4.


Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch.


Read this chapter to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the detail.




A CRUD operation deals with a single document that has a unique combination of
_index, _type, and routing values (which defaults to the
document’s _id). This means that we know exactly which shard in the cluster
holds that document.


Search requires a more complicated execution model because we don’t know which
documents will match the query: they could be on any shard in the cluster. A
search request has to consult a copy of every shard in the index or indices
we’re interested in to see if they have any matching documents.


But finding all matching documents is only half the story. Results from
multiple shards must be combined into a single sorted list before the search
API can return a “page” of results. For this reason, search is executed in a
two-phase process called query then fetch.








Query Phase


During the initial query phase,  the query is broadcast to a shard copy (a
primary or replica shard) of every shard in the index. Each shard executes
the search locally and builds a priority queue of matching documents.


Priority Queue

A priority queue is just a sorted list that holds the top-n matching
documents. The size of the priority queue depends on the pagination
parameters from and size.  For example, the following search request
would require a priority queue big enough to hold 100 documents:


GET /_search
{
    "from": 90,
    "size": 10
}




The query phase process is depicted in Figure 9-1.



[image: Query phase of distributed search]
Figure 9-1. Query phase of distributed search




The query phase consists of the following three steps:


	
The client sends a search request to Node 3, which creates an empty
priority queue of size from + size.



	
Node 3 forwards the search request to a primary or replica copy of every
shard in the index. Each shard executes the query locally and adds the
results into a local sorted priority queue of size from + size.



	
Each shard returns the doc IDs and sort values of all the docs in its
priority queue to the coordinating node, Node 3, which merges these
values into its own priority queue to produce a globally sorted list of
results.







When a search request is sent to a node, that node becomes the coordinating
node. It is the job of this node to broadcast the search request to all
involved shards, and to gather their responses into a globally sorted result
set that it can return to the client.


The first step is to broadcast the request to a shard copy of every node in
the index. Just like document GET requests, search requests
can be handled by a primary shard or by any of its replicas. This is how more
replicas (when combined with more hardware) can increase search throughput.
A coordinating node will round-robin through all shard copies on subsequent
requests in order to spread the load.


Each shard executes the query locally and builds a sorted priority queue of
length from + size—in other words, enough results to satisfy the global
search request all by itself. It returns a lightweight list of results to the
coordinating node, which contains just the doc IDs and any values required for
sorting, such as the _score.


The coordinating node merges these shard-level results into its own sorted
priority queue, which represents the globally sorted result set. Here the query
phase ends.

Note

An index can consist of one or more primary shards, so a search request
against a single index needs to be able to combine the results from multiple
shards. A search against multiple or all indices works in exactly the same
way—there are just more shards involved.



















Fetch Phase


The query phase identifies which documents satisfy the search request, but we
still need to retrieve the documents themselves. This is the job of the fetch
phase, shown in Figure 9-2.



[image: Fetch Phase of distributed search]
Figure 9-2. Fetch phase of distributed search




The distributed phase consists of the following steps:


	
The coordinating node identifies which documents need to be fetched and
issues a multi GET request to the relevant shards.



	
Each shard loads the documents and enriches them, if required, and then
returns the documents to the coordinating node.



	
Once all documents have been fetched, the coordinating node returns the
results to the client.







The coordinating node first decides which documents actually need to be
fetched. For instance, if our query specified { "from": 90, "size": 10 },
the first 90 results would be discarded and only the next 10 results would
need to be retrieved. These documents may come from one, some, or all of the
shards involved in the original search request.


The coordinating node builds a multi-get request for
each shard that holds a pertinent document and sends the request to the same
shard copy that handled the query phase.


The shard loads the document bodies—the _source field—and, if
requested, enriches the results with metadata and
search snippet highlighting.
Once the coordinating node receives all results, it assembles them into a
single response that it returns to the client.


Deep Pagination

The query-then-fetch process supports pagination with the from and size
parameters, but within limits.  Remember that each shard must build a priority
queue of length from + size, all of which need to be passed back to
the coordinating node. And the coordinating node needs to sort through
number_of_shards * (from + size) documents in order to find the correct
size documents.


Depending on the size of your documents, the number of shards, and the
hardware you are using, paging 10,000 to 50,000 results (1,000 to 5,000 pages)
deep should be perfectly doable. But with big-enough from values, the
sorting process can become very heavy indeed, using vast amounts of CPU,
memory, and bandwidth.  For this reason, we strongly advise against deep paging.


In practice, “deep pagers” are seldom human anyway.  A human will stop
paging after two  or three pages and will change the search criteria. The
culprits are usually bots or web spiders that tirelessly keep fetching page
after page until your servers crumble at the knees.


If you do need to fetch large numbers of docs from your cluster, you can
do so efficiently by disabling sorting with the scan search type,
which we discuss later in this chapter.



















Search Options


A few optional query-string parameters can influence the search process.










preference


The preference parameter allows you to control which shards or nodes are
used to handle the search request. It accepts values such as _primary,
_primary_first, _local, _only_node:xyz, _prefer_node:xyz, and
_shards:2,3, which are explained in detail on the
search preference
documentation page.


However, the most generally useful value is some arbitrary string, to avoid
the bouncing results problem.


Bouncing Results

Imagine that you are sorting your results by a timestamp field, and
two documents have the same timestamp.  Because search requests are
round-robined between all available shard copies, these two documents may be
returned in one order when the request is served by the primary, and in
another order when served by the replica.


This is known as the bouncing results problem: every time the user refreshes
the page, the results appear in a different order. The problem can be avoided by always using the same shards for the same user,
which can be done by setting the preference parameter to an arbitrary string
like the user’s session ID.



















timeout


By default, the coordinating node waits to receive a response from all shards.
If one node is having trouble, it could slow down the response to all search
requests.


The timeout parameter tells the coordinating node how long it should wait
before giving up and just returning the results that it already has. It can be
better to return some results than none at all.


The response to a search request will indicate whether the search timed out and
how many shards responded successfully:


    ...
    "timed_out":     true,  [image: 1]
    "_shards": {
       "total":      5,
       "successful": 4,
       "failed":     1 [image: 2]
    },
    ...


	[image: 1]

	The search request timed out.


	[image: 2]

	One shard out of five failed to respond in time.





If all copies of a shard fail for other reasons—perhaps because of a
hardware failure—this will also be reflected in the _shards section of
the response.

















routing


In “Routing a Document to a Shard”, we explained how a custom routing parameter could be
provided at index time to ensure that all related documents, such as the
documents belonging to a single user, are stored on a single shard.  At search
time, instead of searching on all the shards of an index, you can specify
one or more routing values to limit the search to just those shards:


GET /_search?routing=user_1,user2


This technique comes in handy when designing very large search systems, and we
discuss it in detail in Chapter 43.

















search_type


While query_then_fetch is the default search type, other search types can
be specified for particular purposes, for example:


GET /_search?search_type=count


	count

	
The count search type has only a query phase.  It can be used when you
don’t need search results, just a document count or
aggregations on documents matching the query.



	query_and_fetch

	
The query_and_fetch search type combines the query and fetch phases into a
single step.  This is an internal optimization that is used when a search
request targets a single shard only, such as when a
routing value has been specified. While you can choose
to use this search type manually, it is almost never useful to do so.



	dfs_query_then_fetch and dfs_query_and_fetch

	
The dfs search types have a prequery phase that fetches the term
frequencies from all involved shards in order to calculate global term
frequencies. We discuss this further in “Relevance Is Broken!”.



	scan

	
The scan search type is used in conjunction with the scroll API to
retrieve large numbers of results efficiently. It does this by disabling
sorting.  We discuss scan-and-scroll in the next section.




























scan and scroll


The scan search type and the scroll API are used together to retrieve
large numbers of documents from Elasticsearch efficiently, without paying the
penalty of deep pagination.


	scroll

	

A scrolled search allows us to do an initial search and to keep pulling
batches of results from Elasticsearch until there are no more results left.
It’s a bit like a cursor in a traditional database.


A scrolled search takes a snapshot in time. It doesn’t see any changes that
are made to the index after the initial search request has been made. It does
this by keeping the old data files around, so that it can preserve its “view”
on what the index looked like at the time it started.






	scan

	
The costly part of deep pagination is the global sorting of results, but if we
disable sorting, then we can return all documents quite cheaply. To do this, we
use the scan search type. Scan instructs Elasticsearch to do no sorting, but
to just return the next batch of results from every shard that still has
results to return.






To use scan-and-scroll, we execute a search request setting search_type to
scan, and passing a scroll parameter telling Elasticsearch how long it
should keep the scroll open:


GET /old_index/_search?search_type=scan&scroll=1m [image: 1]
{
    "query": { "match_all": {}},
    "size":  1000
}


	[image: 1]

	Keep the scroll open for 1 minute.





The response to this request doesn’t include any hits, but does include a
_scroll_id, which is a long Base-64 encoded string. Now we can pass the
_scroll_id to the _search/scroll endpoint to retrieve the first batch of
results:


GET /_search/scroll?scroll=1m [image: 1]
c2Nhbjs1OzExODpRNV9aY1VyUVM4U0NMd2pjWlJ3YWlBOzExOTpRNV9aY1VyUVM4U0 [image: 2]
NMd2pjWlJ3YWlBOzExNjpRNV9aY1VyUVM4U0NMd2pjWlJ3YWlBOzExNzpRNV9aY1Vy
UVM4U0NMd2pjWlJ3YWlBOzEyMDpRNV9aY1VyUVM4U0NMd2pjWlJ3YWlBOzE7dG90YW
xfaGl0czoxOw==


	[image: 1]

	Keep the scroll open for another minute.


	[image: 2]

	The _scroll_id can be passed in the body, in the URL, or as a
query parameter.





Note that we again specify ?scroll=1m.  The scroll expiry time is refreshed
every time we run a scroll request, so it needs to give us only enough time
to process the current batch of results, not all of the documents that match
the query.


The response to this scroll request includes the first batch of results.
Although we specified a size of 1,000, we get back many more
documents.  When scanning, the size is applied to each shard, so you will
get back a maximum of size * number_of_primary_shards documents in each
batch.

Note
The scroll request also returns  a new _scroll_id.  Every time
we make the next scroll request, we must pass the _scroll_id returned by the
previous scroll request.



When no more hits are returned, we have processed all matching documents.

Tip
Some of the official Elasticsearch clients
provide scan-and-scroll helpers that provide an easy wrapper around this
functionality.













Chapter 10. Index Management



We have seen how Elasticsearch makes it easy to start developing a new
application without requiring any advance planning or setup.  However, it
doesn’t take long before you start wanting to fine-tune the indexing and
search process to better suit your particular use case. Almost all of these customizations relate to the index, and the types
that it contains.  In this chapter, we introduce the APIs
for managing indices and type mappings, and the most important settings.








Creating an Index


Until now, we have created a new index by simply indexing a document into it. The index is created with the default settings, and new fields are added to the type mapping by using dynamic mapping. Now we need more control over the process: we want to ensure that the index has been created with the appropriate number of primary shards, and that analyzers and mappings are set up before we index any data.


To do this, we have to create the index manually, passing in any settings or
type mappings in the request body, as follows:


PUT /my_index
{
    "settings": { ... any settings ... },
    "mappings": {
        "type_one": { ... any mappings ... },
        "type_two": { ... any mappings ... },
        ...
    }
}


In fact, if you want to, you can prevent the automatic creation of indices by
adding the following setting to the config/elasticsearch.yml file on each
node:


action.auto_create_index: false

Note

Later, we discuss how you can use “Index Templates” to preconfigure
automatically created indices. This is particularly useful when indexing log
data: you log into an index whose name includes the date and, as midnight
rolls over, a new properly configured index automatically springs into
existence.



















Deleting an Index


To delete an index, use the following request:


DELETE /my_index


You can delete multiple indices with this:


DELETE /index_one,index_two
DELETE /index_*


You can even delete all indices with this:


DELETE /_all

















Index Settings


There are many many knobs that you can twiddle to
customize index behavior, which you can read about in the
Index Modules reference documentation,
but…

Tip
Elasticsearch comes with good defaults. Don’t twiddle these knobs until
you understand what they do and why you should change them.



Two of the most important settings are as follows:


	number_of_shards

	
The number of primary shards that an index should have,
which defaults to 5.  This setting cannot be changed
after index creation.



	number_of_replicas

	
The number of replica shards (copies) that each primary shard
should have, which defaults to 1.  This setting can be changed
at any time on a live index.






For instance, we could create a small index—just one primary shard—and no replica shards with the following request:


PUT /my_temp_index
{
    "settings": {
        "number_of_shards" :   1,
        "number_of_replicas" : 0
    }
}


Later, we can change the number of replica shards dynamically using the
update-index-settings API as follows:


PUT /my_temp_index/_settings
{
    "number_of_replicas": 1
}

















Configuring Analyzers


The third important index setting is the analysis section, which is used
to configure existing analyzers or to create new custom analyzers
specific to your index.


In “Analysis and Analyzers”, we introduced some of the built-in analyzers,
which are used to convert full-text strings into an inverted index,
suitable for searching.


The standard analyzer, which is the default analyzer
used for full-text fields, is a good choice for most Western languages.
It consists of the following:



	
The standard tokenizer, which splits the input text on word boundaries



	
The standard token filter, which is intended to tidy up the tokens
emitted by the tokenizer (but currently does nothing)



	
The lowercase token filter, which converts all tokens into lowercase



	
The stop token filter, which removes stopwords—common words
that have little impact on search relevance, such as a, the, and,
is.






By default, the stopwords filter is disabled.  You can enable it by creating a
custom analyzer based on the standard analyzer and setting the stopwords
parameter. Either provide a list of stopwords or tell it to use a predefined
stopwords list from a particular language.


In the following example, we create a new analyzer called the es_std
analyzer, which uses the predefined list of Spanish stopwords:


PUT /spanish_docs
{
    "settings": {
        "analysis": {
            "analyzer": {
                "es_std": {
                    "type":      "standard",
                    "stopwords": "_spanish_"
                }
            }
        }
    }
}


The es_std analyzer is not global—it exists only in the spanish_docs
index where we have defined it. To test it with the analyze API, we must
specify the index name:


GET /spanish_docs/_analyze?analyzer=es_std
El veloz zorro marrón


The abbreviated results show that the Spanish stopword El has been
removed correctly:


{
  "tokens" : [
    { "token" :    "veloz",   "position" : 2 },
    { "token" :    "zorro",   "position" : 3 },
    { "token" :    "marrón",  "position" : 4 }
  ]
}

















Custom Analyzers


While Elasticsearch comes with a number of analyzers available out of the box,
the real power comes from the ability to create your own custom analyzers
by combining character filters, tokenizers, and token filters in a
configuration that suits your particular data.


In “Analysis and Analyzers”, we said that an analyzer is a wrapper that combines
three functions into a single package, which are executed in sequence:


	Character filters

	

Character filters are used to “tidy up” a string before it is tokenized.
For instance, if our text is in HTML format, it will contain HTML tags like
<p> or <div> that we don’t want to be indexed. We can use the
html_strip character filter
to remove all HTML tags and to convert HTML entities like &Aacute; into the
corresponding Unicode character Á.


An analyzer may have zero or more character filters.






	Tokenizers

	

An analyzer must have a single tokenizer.  The tokenizer breaks up the
string into individual terms or tokens. The
standard tokenizer,
which is used in the standard analyzer, breaks up a string into
individual terms on word boundaries, and removes most punctuation, but
other tokenizers exist that have different behavior.


For instance, the
keyword tokenizer
outputs exactly the same string as it received, without any tokenization. The
whitespace tokenizer
splits text on whitespace only. The
pattern tokenizer can
be used to split text on a matching regular expression.






	Token filters

	

After tokenization, the resulting token stream is passed through any
specified token filters, in the order in which they are specified.


Token filters may change, add, or remove tokens.  We have already mentioned the
lowercase and
stop token filters,
but there are many more available in Elasticsearch.
Stemming token filters
“stem” words to their root form. The
ascii_folding filter
removes diacritics, converting a term like "très" into "tres". The
ngram and
edge_ngram token filters can produce
tokens suitable for partial matching or autocomplete.









In Part II, we discuss examples of where and how to use these
tokenizers and filters.  But first, we need to explain how to create a custom
analyzer.










Creating a Custom Analyzer


In the same way as we configured the es_std analyzer previously, we can configure
character filters, tokenizers, and token filters in their respective sections
under analysis:


PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": { ... custom character filters ... },
            "tokenizer":   { ...    custom tokenizers     ... },
            "filter":      { ...   custom token filters   ... },
            "analyzer":    { ...    custom analyzers      ... }
        }
    }
}


As an example, let’s set up a custom analyzer that will do the following:


	
Strip out HTML by using the html_strip character filter.



	
Replace & characters with " and ", using a custom mapping
character filter:


"char_filter": {
    "&_to_and": {
        "type":       "mapping",
        "mappings": [ "&=> and "]
    }
}



	
Tokenize words, using the standard tokenizer.



	
Lowercase terms, using the lowercase token filter.



	
Remove a custom list of stopwords, using a custom stop token filter:


"filter": {
    "my_stopwords": {
        "type":        "stop",
        "stopwords": [ "the", "a" ]
    }
}







Our analyzer definition combines the predefined tokenizer and filters with the
custom filters that we have configured previously:


"analyzer": {
    "my_analyzer": {
        "type":           "custom",
        "char_filter":  [ "html_strip", "&_to_and" ],
        "tokenizer":      "standard",
        "filter":       [ "lowercase", "my_stopwords" ]
    }
}


To put it all together, the whole create-index request looks like this:


PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": {
                "&_to_and": {
                    "type":       "mapping",
                    "mappings": [ "&=> and "]
            }},
            "filter": {
                "my_stopwords": {
                    "type":       "stop",
                    "stopwords": [ "the", "a" ]
            }},
            "analyzer": {
                "my_analyzer": {
                    "type":         "custom",
                    "char_filter":  [ "html_strip", "&_to_and" ],
                    "tokenizer":    "standard",
                    "filter":       [ "lowercase", "my_stopwords" ]
            }}
}}}


After creating the index, use the analyze API to test the new analyzer:


GET /my_index/_analyze?analyzer=my_analyzer
The quick & brown fox


The following abbreviated results show that our analyzer is working correctly:


{
  "tokens" : [
      { "token" :   "quick",    "position" : 2 },
      { "token" :   "and",      "position" : 3 },
      { "token" :   "brown",    "position" : 4 },
      { "token" :   "fox",      "position" : 5 }
    ]
}


The analyzer is not much use unless we tell Elasticsearch where to use it. We
can apply it to a string field with a mapping such as the following:


PUT /my_index/_mapping/my_type
{
    "properties": {
        "title": {
            "type":      "string",
            "analyzer":  "my_analyzer"
        }
    }
}
























Types and Mappings


A type in Elasticsearch represents a class of similar documents. A type
consists of a name—such as user or blogpost—and a mapping. The
mapping, like a database schema, describes the fields or properties that
documents of that type may have, the datatype of each field—such as string,
integer, or date—and how those fields should be indexed and stored by
Lucene.


In “What Is a Document?”, we said that a type is like a table in a relational database.
While this is a useful way to think about types initially, it is worth
explaining in more detail exactly what a type is and how they are implemented
on top of Lucene.










How Lucene Sees Documents


A document in Lucene consists of a simple list of field-value pairs. A field
must have at least one value, but any field can contain multiple values.
Similarly, a single string value may be converted into multiple values by the
analysis process.  Lucene doesn’t care if the values are strings or numbers or
dates—all values are just treated as opaque bytes.


When we index a document in Lucene, the values for each field are added to the
inverted index for the associated field.  Optionally, the original values may
also be stored unchanged so that they can be retrieved later.

















How Types Are Implemented


Elasticsearch types are implemented on top of this simple foundation. An index
may have several types, each with its own mapping, and documents of any of
these types may be stored in the same index.


Because Lucene has no concept of document types, the type name of each
document is stored with the document in a metadata field called _type. When
we search for documents of a particular type, Elasticsearch simply uses a
filter on the _type field to restrict results to documents of that type.


Lucene also has no concept of mappings. Mappings are the layer
that Elasticsearch uses to map complex JSON documents into the
simple flat documents that Lucene expects to receive.


For instance, the mapping for the name field in the user type may declare
that the field is a string field, and that its value should be analyzed
by the whitespace analyzer before being indexed into the inverted
index called name:


"name": {
    "type":     "string",
    "analyzer": "whitespace"
}

















Avoiding Type Gotchas


The fact that documents of different types can be added to the same index
introduces some unexpected complications.


Imagine that we have two types in our index: blog_en for blog posts in
English, and blog_es for blog posts in Spanish.  Both types have a
title field, but one type uses the english analyzer and
the other type uses the spanish analyzer.


The problem is illustrated by the following query:


GET /_search
{
    "query": {
        "match": {
            "title": "The quick brown fox"
        }
    }
}


We are searching in the title field in both types.  The query string needs
to be analyzed, but which analyzer does it use: spanish or english? It
will use the analyzer for the first title field that it finds, which
will be correct for some docs and incorrect for the others.


We can avoid this problem either by naming the fields differently—for example, title_en and title_es—or by explicitly including the type name in the
field name and querying each field separately:


GET /_search
{
    "query": {
        "multi_match": { [image: 1]
            "query":    "The quick brown fox",
            "fields": [ "blog_en.title", "blog_es.title" ]
        }
    }
}


	[image: 1]

	The multi_match query runs a match query on multiple fields
and combines the results.





Our new query uses the english analyzer for the field blog_en.title and
the spanish analyzer for the field blog_es.title, and combines the results
from both fields into an overall relevance score.


This solution can help when both fields have the same datatype, but consider
what would happen if you indexed these two documents into the same index:



	
Type: user






 { "login": "john_smith" }



	
Type: event






 { "login": "2014-06-01" }


Lucene doesn’t care that one field contains a string and the other field
contains a date. It will happily index the byte values from both fields.


However, if we now try to sort on the event.login field, Elasticsearch
needs to load the values in the login field into memory. As we said in
“Fielddata”, it loads the values for  all documents in the index
regardless of their type.


It will try to load these values either as a string or as a date, depending on
which login field it sees first. This will either produce unexpected results
or fail outright.

Tip
To ensure that you don’t run into these conflicts, it is advisable to
ensure that fields with the same name are mapped in the same way in every
type in an index.

























The Root Object


The uppermost level of a mapping is known as the root object. It may
contain the following:



	
A properties section, which lists the mapping for each field that a
document may contain



	
Various metadata fields, all of which start with an underscore, such
as _type, _id, and _source



	
Settings, which control how the dynamic detection of new fields
is handled, such as analyzer, dynamic_date_formats, and
dynamic_templates



	
Other settings, which can be applied both to the root object and to fields
of type object, such as enabled, dynamic, and include_in_all














Properties


We have already discussed the three most important settings for document
fields or properties in “Core Simple Field Types” and “Complex Core Field Types”:


	type

	
The datatype that the field contains, such as string or date



	index

	
Whether a field should be searchable as full text (analyzed), searchable as an exact value (not_analyzed), or not searchable at all (no)



	analyzer

	
Which analyzer to use for a full-text field, both at index time and at search time






We will discuss other field types such as ip, geo_point, and geo_shape in
the appropriate sections later in the book.

















Metadata: _source Field


By default, Elasticsearch stores the JSON string representing the
document body in the _source field. Like all stored fields, the _source
field is compressed before being written to disk.


This is almost always desired functionality because it means the following:



	
The full document is available directly from the search results—no need
for a separate round-trip to fetch the document from another data store.



	
Partial update requests will not function without the _source field.



	
When your mapping changes and you need to reindex your data, you can
do so directly from Elasticsearch instead of having to retrieve all of your
documents from another (usually slower) data store.



	
Individual fields can be extracted from the _source field and returned
in get or search requests when you don’t need to see the whole document.



	
It is easier to debug queries, because you can see exactly what each document
contains, rather than having to guess their contents from a list of IDs.






That said, storing the _source field does use disk space.  If none of the
preceding reasons is important to you, you can disable the _source field with
the following mapping:


PUT /my_index
{
    "mappings": {
        "my_type": {
            "_source": {
                "enabled":  false
            }
        }
    }
}


In a search request, you can ask for only certain fields by specifying the
_source parameter in the request body:


GET /_search
{
    "query":   { "match_all": {}},
    "_source": [ "title", "created" ]
}


Values for these fields will be extracted from the _source field and
returned instead of the full _source.


Stored Fields

Besides indexing the values of a field, you can also choose to store the
original field value for later retrieval. Users with a Lucene background use
stored fields to choose which fields they would like to be able to return in
their search results. In fact, the _source field is a stored field.


In Elasticsearch, setting individual document fields to be stored is usually a
false optimization. The whole document is already stored as the _source
field. It is almost always better to just extract the fields that you need
by using the _source parameter.



















Metadata: _all Field


In “Search Lite”, we introduced the _all field: a special field that
indexes the values from all other fields as one big string. The query_string
query clause (and searches performed as ?q=john) defaults to searching in
the _all field if no other field is specified.


The _all field is useful during the exploratory phase of a new application,
while you are still unsure about the final structure that your documents will
have. You can throw any query string at it and you have a good chance of
finding the document you’re after:


GET /_search
{
    "match": {
        "_all": "john smith marketing"
    }
}


As your application evolves and your search requirements become more exacting,
you will find yourself using the _all field less and less. The _all field
is a shotgun approach to search. By querying individual fields, you have more
flexbility, power, and fine-grained control over which results are considered
to be most relevant.

Note

One of the important factors taken into account by the
relevance algorithm
is the length of the field: the shorter the field, the more important. A term
that appears in a short title field is likely to be more important than the
same term that appears somewhere in a long content field. This distinction
between field lengths disappears in the _all field.




If you decide that you no longer need the _all field, you can disable it
with this mapping:


PUT /my_index/_mapping/my_type
{
    "my_type": {
        "_all": { "enabled": false }
    }
}


Inclusion in the _all field can be controlled on a field-by-field basis
by using the include_in_all setting, which defaults to true.  Setting
include_in_all on an object (or on the root object) changes the
default for all fields within that object.


You may find that you want to keep the _all field around to use
as a catchall full-text field just for specific fields, such as
title, overview, summary, and tags. Instead of disabling the _all
field completely, disable include_in_all for all fields by default,
and enable it only on the fields you choose:


PUT /my_index/my_type/_mapping
{
    "my_type": {
        "include_in_all": false,
        "properties": {
            "title": {
                "type":           "string",
                "include_in_all": true
            },
            ...
        }
    }
}


Remember that the _all field is just an analyzed string field.  It
uses the default analyzer to analyze its values, regardless of which
analyzer has been set on the fields where the values originate.  And
like any string field, you can configure which analyzer the _all
field should use:


PUT /my_index/my_type/_mapping
{
    "my_type": {
        "_all": { "analyzer": "whitespace" }
    }
}

















Metadata: Document Identity


There are four metadata fields associated with document identity:


	_id

	
The string ID of the document



	_type

	
The type name of the document



	_index

	
The index where the document lives



	_uid

	
The _type and _id concatenated together as type#id






By default, the _uid field is stored (can be retrieved) and
indexed (searchable).  The _type field is indexed but not stored,
and the _id and _index fields are neither indexed nor stored, meaning
they don’t really exist.


In spite of this, you can query the _id field as though it were a real
field.  Elasticsearch uses the _uid field to derive the _id. Although you
can change the index and store settings for these fields, you almost
never need to do so.


The _id field does have one setting that you may want to use: the path
setting tells Elasticsearch that it should extract the value for the
_id from a field within the document itself.


PUT /my_index
{
    "mappings": {
        "my_type": {
            "_id": {
                "path": "doc_id" [image: 1]
            },
            "properties": {
                "doc_id": {
                    "type":   "string",
                    "index":  "not_analyzed"
                }
            }
        }
    }
}


	[image: 1]

	Extract the doc _id from the doc_id field.





Then, when you index a document:


POST /my_index/my_type
{
    "doc_id": "123"
}


the _id value will be extracted from the doc_id field in the document
body:


{
    "_index":   "my_index",
    "_type":    "my_type",
    "_id":      "123", [image: 1]
    "_version": 1,
    "created":  true
}


	[image: 1]

	The _id has been extracted correctly.




Warning
While this is very convenient, be aware that it has a slight
performance impact on bulk requests (see “Why the Funny Format?”). The node handling
the request can no longer use the optimized bulk format to parse just
the metadata line in order to decide which shard should receive the request.
Instead, it has to parse the document body as well.

























Dynamic Mapping


When Elasticsearch encounters a previously unknown field in a document, it
uses dynamic mapping to determine the datatype for the
field and automatically adds the new field to the type mapping.


Sometimes this is the desired behavior and sometimes it isn’t. Perhaps
you don’t know what fields will be added to your documents later,
but you want them to be indexed automatically.  Perhaps you just want
to ignore them.  Or—especially if you are using Elasticsearch as a
primary data store—perhaps you want unknown fields to throw an exception
to alert you to the problem.


Fortunately, you can control this behavior with the dynamic setting,
which accepts the following options:


	true

	
Add new fields dynamically—the default



	false

	
Ignore new fields



	strict

	
Throw an exception if an unknown field is encountered






The dynamic setting may be applied to the root object or to any field
of type object.  You could set dynamic to strict by default,
but enable it just for a specific inner object:


PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic":      "strict", [image: 1]
            "properties": {
                "title":  { "type": "string"},
                "stash":  {
                    "type":     "object",
                    "dynamic":  true [image: 2]
                }
            }
        }
    }
}


	[image: 1]

	The my_type object will throw an exception if an unknown field
is encountered.


	[image: 2]

	The stash object will create new fields dynamically.





With this mapping, you can add new searchable fields into the stash object:


PUT /my_index/my_type/1
{
    "title":   "This doc adds a new field",
    "stash": { "new_field": "Success!" }
}


But trying to do the same at the top level will fail:


PUT /my_index/my_type/1
{
    "title":     "This throws a StrictDynamicMappingException",
    "new_field": "Fail!"
}

Note
Setting dynamic to false doesn’t alter the contents of the _source
field at all. The _source will still contain the whole JSON document that
you indexed.  However, any unknown fields will not be added to the mapping and
will not be searchable.


















Customizing Dynamic Mapping


If you know that you are going to be adding new fields on the fly,
you probably want to leave dynamic mapping enabled.  At times, though,
the dynamic mapping “rules” can be a bit blunt.  Fortunately, there
are settings that you can use to customize these rules to better
suit your data.










date_detection


When Elasticsearch encounters a new string field, it checks to see if the
string contains a recognizable date, like 2014-01-01. If it looks
like a date, the field is added as type date. Otherwise, it is
added as type string.


Sometimes this behavior can lead to problems.  Imagine that you index
a document like this:


{ "note": "2014-01-01" }


Assuming that this is the first time that the note field has been seen,
it will be added as a date field.  But what if the next document looks
like this:


{ "note": "Logged out" }


This clearly isn’t a date, but it is too late.  The field is already
a date field and so this “malformed date” will cause an exception to be
thrown.


Date detection can be turned off by setting date_detection to false
on the root object:


PUT /my_index
{
    "mappings": {
        "my_type": {
            "date_detection": false
        }
    }
}


With this mapping in place, a string will always be a string.  If you need
a date field, you have to add it manually.

Note

Elasticsearch’s idea of which strings look like dates can be altered
with the dynamic_date_formats setting.



















dynamic_templates


With dynamic_templates, you can take complete control over the
mapping that is generated for newly detected fields. You
can even apply a different mapping depending on the field name
or datatype.


Each template has a name, which you can use to describe what the template
does, a mapping to specify the mapping that should be applied, and
at least one parameter (such as match) to define which fields the template
should apply to.


Templates are checked in order; the first template that matches is
applied. For instance, we could specify two templates for string fields:



	
es: Field names ending in _es should use the spanish analyzer.



	
en: All others should use the english analyzer.






We put the es template first, because it is more specific than the
catchall en template, which matches all string fields:


PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic_templates": [
                { "es": {
                      "match":              "*_es", [image: 1]
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "spanish"
                      }
                }},
                { "en": {
                      "match":              "*", [image: 2]
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "english"
                      }
                }}
            ]
}}}


	[image: 1]

	Match string fields whose name ends in _es.


	[image: 2]

	Match all other string fields.





The match_mapping_type  allows you to apply the template only
to fields of the specified type, as detected by the standard dynamic
mapping rules, (for example string or long).


The match parameter matches just the field name, and the path_match
parameter matches the full path to a field in an object, so
the pattern address.*.name would match a field like this:


{
    "address": {
        "city": {
            "name": "New York"
        }
    }
}


The unmatch and path_unmatch patterns can be used to exclude fields
that would otherwise match.


More configuration options can be found in the
reference documentation for the root object.
























Default Mapping


Often, all types in an index share similar fields and settings.  It can be
more convenient to specify these common settings in the _default_ mapping,
instead of having to repeat yourself every time you create a new type. The
_default_ mapping acts as a template for new types.  All types created
after the _default_ mapping will include all of these default settings,
unless explicitly overridden in the type mapping itself.


For instance, we can disable the _all field for all types, using the
_default_ mapping, but enable it just for the blog type, as follows:


PUT /my_index
{
    "mappings": {
        "_default_": {
            "_all": { "enabled":  false }
        },
        "blog": {
            "_all": { "enabled":  true  }
        }
    }
}


The _default_ mapping can also be a good place to specify index-wide
dynamic templates.

















Reindexing Your Data


Although you can add new types to an index, or add new fields to a type, you
can’t add new analyzers or make changes to existing fields.  If you were to do
so, the data that had already been indexed would be incorrect and your
searches would no longer work as expected.


The simplest way to apply these changes to your existing data is to
reindex:  create a new index with the new settings and copy all of your
documents from the old index to the new index.


One of the advantages of the _source field is that you already have the
whole document available to you in Elasticsearch itself. You don’t have to
rebuild your index from the database, which is usually much slower.


To reindex all of the documents from the old index efficiently,  use
scan-and-scroll to retrieve batches of documents from the old index,
and the bulk API to push them into the new index.


Reindexing in Batches

You can run multiple reindexing jobs at the same time, but you obviously don’t
want their results to overlap.  Instead, break a big reindex down into smaller
jobs by filtering on a date or timestamp field:


GET /old_index/_search?search_type=scan&scroll=1m
{
    "query": {
        "range": {
            "date": {
                "gte":  "2014-01-01",
                "lt":   "2014-02-01"
            }
        }
    },
    "size":  1000
}


If you continue making changes to the old index, you will want to make
sure that you include the newly added documents in your new index as well.
This can be done by rerunning the reindex process, but again filtering
on a date field to match only documents that have been added since the
last reindex process started.



















Index Aliases and Zero Downtime


The problem with the reindexing process described previously is that you need
to update your application to use the new index name.  Index aliases
to the rescue!


An index alias is like a shortcut or symbolic link, which can point to
one or more indices, and can be used in any API that expects an index name.
Aliases give us an enormous amount of flexibility. They allow us to do the following:



	
Switch transparently between one index and another on a running cluster



	
Group multiple indices (for example, last_three_months)



	
Create “views” on a subset of the documents in an index






We will talk more about the other uses for aliases later in the book. For now
we will explain how to use them to switch from an old index to a new index
with zero downtime.


There are two endpoints for managing aliases: _alias for single
operations, and _aliases to perform multiple operations atomically.


In this scenario, we will assume that your application is talking to an
index called my_index. In reality, my_index will be an alias that
points to the current real index.  We will include a version number in the
name of the real index: my_index_v1, my_index_v2, and so forth.


To start off, create the index my_index_v1, and set up the alias
my_index to point to it:


PUT /my_index_v1 [image: 1]
PUT /my_index_v1/_alias/my_index [image: 2]


	[image: 1]

	Create the index my_index_v1.


	[image: 2]

	Set the my_index alias to point to my_index_v1.





You can check which index the alias points to:


GET /*/_alias/my_index


Or which aliases point to the index:


GET /my_index_v1/_alias/*


Both of these return the following:


{
    "my_index_v1" : {
        "aliases" : {
            "my_index" : { }
        }
    }
}


Later, we decide that we want to change the mappings for a field in our index.
Of course, we can’t change the existing mapping, so we have to reindex
our data.  To start, we create my_index_v2 with the new mappings:


PUT /my_index_v2
{
    "mappings": {
        "my_type": {
            "properties": {
                "tags": {
                    "type":   "string",
                    "index":  "not_analyzed"
                }
            }
        }
    }
}


Then we reindex our data from my_index_v1 to my_index_v2, following
the process described in “Reindexing Your Data”.  Once we are satisfied that our
documents have been reindexed correctly, we switch our alias
to point to the new index.


An alias can point to multiple indices, so we need to remove the alias
from the old index at the same time as we add it to the new index.  The
change needs to be atomic, which means that we must use the _aliases
endpoint:


POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index_v1", "alias": "my_index" }},
        { "add":    { "index": "my_index_v2", "alias": "my_index" }}
    ]
}


Your application has switched from using the old index to the new
index transparently, with zero downtime.

Tip

Even when you think that your current index design is perfect, it is likely
that you will need to make some change later, when your index
is already being used in production.


Be prepared: use aliases instead of indices in your application. Then you
will be able to reindex whenever you need to. Aliases are cheap and should
be used liberally.














Chapter 11. Inside a Shard



In Chapter 2, we introduced the shard, and described it as a
low-level worker unit. But what exactly is a shard and how does it work?
In this chapter, we answer these questions:



	
Why is search near real-time?



	
Why are document CRUD (create-read-update-delete) operations real-time?



	
How does Elasticsearch ensure that the changes you make are durable, that
they won’t be lost if there is a power failure?



	
Why does deleting documents not free up space immediately?



	
What do the refresh, flush, and optimize APIs do, and when should
you use them?






The easiest way to understand how a shard functions today is to start with a
history lesson. We will look at the problems that needed to be solved in order
to provide a distributed durable data store with near real-time search and
analytics.


Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch. Read
this chapter to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the detail.










Making Text Searchable


The first challenge that had to be solved was how to make text searchable.
Traditional databases store a single value per field, but this is insufficient
for full-text search.  Every word in a text field needs to be searchable,
which means that the database needs to be able to index multiple values—words, in this case—in a single field.


The data structure that best supports the multiple-values-per-field
requirement is the inverted index, which we introduced in
“Inverted Index”. The inverted index contains a sorted list of all of the
unique values, or terms, that occur in any document and, for each term, a list
of all the documents that contain it.

Term  | Doc 1 | Doc 2 | Doc 3 | ...
------------------------------------
brown |   X   |       |  X    | ...
fox   |   X   |   X   |  X    | ...
quick |   X   |   X   |       | ...
the   |   X   |       |  X    | ...

Note

When discussing inverted indices, we talk about indexing documents because,
historically, an inverted index was used to index whole unstructured text
documents.  A document in Elasticsearch is a structured JSON document with
fields and values.  In reality, every indexed field in a JSON document has its
own inverted index.




The inverted index may hold a lot more information than the list
of documents that contain a particular term. It may store a count of the number of
documents that contain each term, the number of times a term appears in a particular
document, the order of terms in each document, the length of each document,
the average length of all documents, and more.  These statistics allow
Elasticsearch to determine which terms are more important than others, and
which documents are more important than others, as described in
“What Is Relevance?”.


The important thing to realize is that the inverted index needs to know about
all documents in the collection in order for it to function as intended.


In the early days of full-text search, one big inverted index was built for
the entire document collection and written to disk.  As soon as the new index
was ready, it replaced the old index, and recent changes became searchable.










Immutability


The inverted index that is written to disk is immutable: it doesn’t
change. Ever.  This immutability has important benefits:



	
There is no need for locking. If you never have to update the index, you
never have to worry about multiple processes trying to make changes at
the same time.



	
Once the index has been read into the kernel’s filesystem cache, it stays
there, because it never changes.  As long as there is enough space in the
filesystem cache, most reads will come from memory instead of having to
hit disk.  This provides a big performance boost.



	
Any other caches (like the filter cache) remain valid for the life of the
index. They don’t need to be rebuilt every time the data changes,
because the data doesn’t change.



	
Writing a single large inverted index allows the data to be compressed,
reducing costly disk I/O and the amount of RAM needed to cache the index.






Of course, an immutable index has its downsides too, primarily the fact that
it is immutable! You can’t change it.  If you want to make new documents
searchable, you have to rebuild the entire index. This places a significant limitation either on the amount of data that an index can contain, or the frequency with which the index can be updated.
























Dynamically Updatable Indices


The next problem that needed to be solved was how to make an inverted index
updatable without losing the benefits of immutability?  The answer turned out
to be: use more than one index.


Instead of rewriting the whole inverted index, add new supplementary indices
to reflect more-recent changes. Each inverted index can be queried in turn—starting with the oldest—and the results combined.


Lucene, the Java libraries on which Elasticsearch is based, introduced  the
concept of per-segment search.  A segment is an inverted index in its own
right,  but now the word index in Lucene came to mean a collection of
segments plus a commit point—a file that lists all known segments, as depicted in Figure 11-1. New documents are first added to an in-memory indexing buffer, as shown in Figure 11-2, before being written to an on-disk segment, as in Figure 11-3



[image: A Lucene index with a commit point and three segments]
Figure 11-1. A Lucene index with a commit point and three segments




Index Versus Shard

To add to the confusion, a Lucene index is what we call a shard in
Elasticsearch, while an index in Elasticsearch is a collection of shards.
When Elasticsearch searches an index, it sends the query out to a copy of
every shard (Lucene index) that belongs to the index, and then reduces the
per-shards results to a global result set, as described in
Chapter 9.




A per-segment search works as follows:


	
New documents are collected in an in-memory indexing buffer.
See Figure 11-2.



	
Every so often, the buffer is commited:



	
A new segment—a supplementary inverted index—is written to disk.



	
A new commit point is written to disk, which includes the name of the new
segment.



	
The disk is fsync’ed—all writes waiting in the filesystem cache are
flushed to disk, to ensure that they have been physically written.







	
The new segment is opened, making the documents it contains visible to search.



	
The in-memory buffer is cleared, and is ready to accept new documents.








[image: A Lucene index with new documents in the in-memory buffer, ready to commit]
Figure 11-2. A Lucene index with new documents in the in-memory buffer, ready to commit





[image: After a commit, a new segment is added to the index and the buffer is cleared]
Figure 11-3. After a commit, a new segment is added to the commit point and the buffer is cleared




When a query is issued, all known segments are queried in turn. Term
statistics are aggregated across all segments to ensure that the relevance of
each term and each document is calculated accurately. In this way, new
documents can be added to the index relatively cheaply.










Deletes and Updates


Segments are immutable, so documents cannot be removed from older segments,
nor can older segments be updated to reflect a newer version of a document.
Instead, every commit point includes a .del file that lists which documents
in which segments have been deleted.


When a document is “deleted,” it is actually just marked as deleted in the
.del file. A document that has been marked as deleted can still match a
query, but it is removed from the results list before the final query results
are returned.


Document updates work in a similar way: when a document is updated, the old
version of the document is marked as deleted, and the new version of the
document is indexed in a new segment. Perhaps both versions of the document
will match a query, but the older deleted version is removed before the query
results are returned.


In “Segment Merging”, we show how deleted documents are purged from
the filesystem.
























Near Real-Time Search


With the development of per-segment search, the delay between indexing a
document and making it visible to search dropped dramatically.  New documents
could be made searchable within minutes, but that still isn’t fast enough.


The bottleneck is the disk.  Commiting a new segment to disk requires an
fsync to ensure that the segment is
physically written to disk and that data will not be lost if there is a power
failure. But an fsync is costly; it cannot be performed every time a
document is indexed without a big performance hit.


What was needed was a more lightweight way to make new documents visible to
search, which meant removing fsync from the equation.


Sitting between Elasticsearch and the disk is the filesystem cache.  As before, documents in the in-memory indexing buffer (Figure 11-4) are written to a new segment (Figure 11-5). But the new
segment is written to the filesystem cache first—which is cheap—and
only later is it flushed to disk—which is expensive.  But once a file is in
the cache, it can be opened and read, just like any other file.



[image: A Lucene index with new documents in the in-memory buffer]
Figure 11-4. A Lucene index with new documents in the in-memory buffer




Lucene allows new segments to be written and opened—making the documents
they contain visible to search—without performing a full commit. This is a
much lighter process than a commit, and can be done frequently without ruining
performance.



[image: The buffer contents have been written to a segment, which is searchable, but is not yet commited]
Figure 11-5. The buffer contents have been written to a segment, which is searchable, but is not yet commited












refresh API


In Elasticsearch, this lightweight process of writing and opening a new
segment is called a refresh. By default, every shard is refreshed
automatically once every second. This is why we say that Elasticsearch has
near real-time search: document changes are not visible to search
immediately, but will become visible within 1 second.


This can be confusing for new users: they index a document and try to search
for it, and it just isn’t there.  The way around this is to perform a manual
refresh, with the refresh API:


POST /_refresh [image: 1]
POST /blogs/_refresh [image: 2]


	[image: 1]

	Refresh all indices.


	[image: 2]

	Refresh just the blogs index.




Tip

While a refresh is much lighter than a commit, it still has a performance
cost.  A manual refresh can be useful when writing tests, but don’t do a
manual refresh every time you index a document in production; it will hurt
your performance.  Instead, your application needs to be aware of the near
real-time nature of Elasticsearch and make allowances for it.




Not all use cases require a refresh every second.  Perhaps you are using
Elasticsearch to index millions of log files, and you would prefer to optimize
for index speed rather than near real-time search.  You can reduce the
frequency of refreshes on a per-index basis by setting the refresh_interval:


PUT /my_logs
{
  "settings": {
    "refresh_interval": "30s" [image: 1]
  }
}


	[image: 1]

	Refresh the my_logs index every 30 seconds.





The refresh_interval can be updated dynamically on an existing index.  You
can turn off automatic refreshes while you are building a big new index, and then turn them back on when you start using the index in production:


POST /my_logs/_settings
{ "refresh_interval": -1 } [image: 1]

POST /my_logs/_settings
{ "refresh_interval": "1s" } [image: 2]


	[image: 1]

	Disable automatic refreshes.


	[image: 2]

	Refresh automatically every second.




Caution
The refresh_interval expects a duration such as 1s (1
second) or 2m (2 minutes).  An absolute number like 1 means
1 millisecond--a sure way to bring your cluster to its knees.

























Making Changes Persistent


Without an fsync to flush data in the filesystem cache to disk, we cannot
be sure that the data will still be there after a power failure, or even after
exiting the application normally.  For Elasticsearch to be reliable, it needs
to ensure that changes are persisted to disk.


In “Dynamically Updatable Indices”, we said that a full commit flushes segments to disk and
writes a commit point, which lists all known segments.  Elasticsearch uses
this commit point during startup or when reopening an index to decide which
segments belong to the current shard.


While we refresh once every second to achieve near real-time search, we still
need to do full commits regularly to make sure that we can recover from
failure.  But what about the document changes that happen between commits?  We
don’t want to lose those either.


Elasticsearch added a translog, or transaction log, which records every
operation in Elasticsearch as it happens.  With the translog, the process now
looks like this:


	
When a document is indexed, it is added to the in-memory buffer and
appended to the translog, as shown in Figure 11-6.



[image: New documents are added to the in-memory buffer and appended to the transaction log]
Figure 11-6. New documents are added to the in-memory buffer and appended to the transaction log





	
The refresh leaves the shard in the state depicted in Figure 11-7. Once every second, the shard is refreshed:



	
The docs in the in-memory buffer are written to a new segment,
without an fsync.



	
The segment is opened to make it visible to search.



	
The in-memory buffer is cleared.







[image: After a refresh, the buffer is cleared but the transaction log is not]
Figure 11-7. After a refresh, the buffer is cleared but the transaction log is not








	
This process continues with more documents being added to the in-memory
buffer and appended to the transaction log (see Figure 11-8).



[image: The transaction log keeps accumulating documents]
Figure 11-8. The transaction log keeps accumulating documents





	
Every so often—such as when the translog is getting too big—the index
is flushed; a new translog is created, and a full commit is performed (see Figure 11-9):



	
Any docs in the in-memory buffer are written to a new segment.



	
The buffer is cleared.



	
A commit point is written to disk.



	
The filesystem cache is flushed with an fsync.



	
The old translog is deleted.














The translog provides a persistent record of all operations that have not yet
been flushed to disk. When starting up, Elasticsearch will use the last commit
point to recover known segments from disk, and will then replay all operations
in the translog to add the changes that happened after the last commit.


The translog is also used to provide real-time CRUD.  When you try to
retrieve, update, or delete a document by ID, it first checks the translog for
any recent changes before trying to retrieve the document from the relevant
segment. This means that it always has access to the latest known version of
the document, in real-time.



[image: After a flush, the segments are fully commited and the transaction log is cleared]
Figure 11-9. After a flush, the segments are fully commited and the transaction log is cleared












flush API


The action of performing a commit and truncating the translog is known in
Elasticsearch as a flush.  Shards are flushed automatically every 30
minutes, or when the translog becomes too big. See the
translog documentation for settings
that can be used to control these thresholds:


The flush API can be used to perform a manual flush:


POST /blogs/_flush [image: 1]

POST /_flush?wait_for_ongoing [image: 2]


	[image: 1]

	Flush the blogs index.


	[image: 2]

	Flush all indices and wait until all flushes have completed before
returning.





You seldom need to issue a manual flush yourself; usually, automatic
flushing is all that is required.


That said, it is beneficial to flush your indices before restarting a node or closing an index. When Elasticsearch tries to recover or reopen an index, it has to replay all of the operations in the translog, so the shorter the log, the faster the recovery.


How Safe Is the Translog?

The purpose of the translog is to ensure that operations are not lost.  This
begs the question: how safe is the translog?


Writes to a file will not survive a reboot until the file has been
fsync‘ed to disk.  By default, the translog is fsync‘ed every 5
seconds. Potentially, we could lose 5 seconds worth of data—if the translog
were the only mechanism that we had for dealing with failure.


Fortunately, the translog is only part of a much bigger system.  Remember that
an indexing request is considered successful only after it has  completed
on both the primary shard and all replica shards.  Even if the node holding
the primary shard were to suffer catastrophic failure, it would be unlikely to
affect the nodes holding the replica shards at the same time.


While we could force the translog to fsync more frequently (at the cost of
indexing performance), it is unlikely to provide more reliability.


























Segment Merging


With the automatic refresh process creating a new segment every second, it
doesn’t take long for the number of segments to explode. Having too many
segments is a problem. Each segment consumes file handles, memory, and CPU
cycles.  More important, every search request has to check every segment in
turn; the more segments there are, the slower the search will be.


Elasticsearch solves this problem by merging segments in the background. Small
segments are merged into bigger segments, which, in turn, are merged into even
bigger segments.


This is the moment when those old deleted documents are purged from the filesystem.  Deleted documents (or old versions of updated documents) are not
copied over to the new bigger segment.


There is nothing you need to do to enable merging. It happens automatically
while you are indexing and searching. The process works like as depicted in Figure 11-10:


	
While indexing, the refresh process creates new segments and opens them for
search.



	
The merge process selects a few segments of similar size and merges them
into a new bigger segment in the background. This does not interrupt
indexing and searching.



[image: Two commited segments and one uncommited segment in the process of being merged into a bigger segment]
Figure 11-10. Two commited segments and one uncommited segment in the process of being merged into a bigger segment





	
Figure 11-11 illustrates activity as the merge completes:



	
The new segment is flushed to disk.



	
A new commit point is written that includes the new segment and
excludes the old, smaller segments.



	
The new segment is opened for search.



	
The old segments are deleted.







[image: Once merging has finished, the old segments are deleted]
Figure 11-11. Once merging has finished, the old segments are deleted












The merging of big segments can use a lot of I/O and CPU, which can hurt
search performance if left unchecked.  By default, Elasticsearch throttles the
merge process so that search still has enough resources available to perform
well.

Tip
See “Segments and Merging” for advice about tuning merging for your use
case.











optimize API


The optimize API is best described as the forced merge API. It forces a
shard to be merged down to the number of segments specified in the
max_num_segments parameter. The intention is to reduce the number of
segments (usually to one) in order to speed up search performance.

Warning
The optimize API should not be used on a dynamic index—an
index that is being actively updated.  The background merge process does a
very good job, and optimizing will hinder the process. Don’t interfere!



In certain specific circumstances, the optimize API can be beneficial.
The typical use case is for logging, where logs are stored in an index per
day, week, or month.  Older indices are essentially read-only; they are
unlikely to change.


In this case, it can be useful to optimize the shards of an old index down to
a single segment each; it will use fewer resources and searches will be
quicker:


POST /logstash-2014-10/_optimize?max_num_segments=1 [image: 1]


	[image: 1]

	Merges each shard in the index down to a single segment




Warning

Be aware that merges triggered by the optimize API are not
throttled at all. They can consume all of the I/O on your nodes, leaving
nothing for search and potentially making your cluster unresponsive. If you
plan on optimizing an index, you should use shard allocation (see
“Migrate Old Indices”) to first move the index to a node where it is safe to
run.





















Part II. Search in Depth



In Part I we covered the basic tools in just enough detail to
allow you to start searching your data with Elasticsearch.  It won’t take
long, though, before you find that you want more: more flexibility when matching
user queries, more-accurate ranking of results, more-specific searches to
cover different problem domains.


To move to the next level, it is not enough to just use the match query. You
need to understand your data and how you want to be able to search it. The
chapters in this part explain how to index and query your data to allow
you to take advantage of word proximity, partial matching, fuzzy matching, and
language awareness.


Understanding how each query contributes to the relevance _score will help
you to tune your queries: to ensure that the documents you consider to be the
best results appear on the first page, and to trim the “long tail” of barely
relevant results.


Search is not just about full-text search: a large portion of your data will
be structured values like dates and numbers. We will start by explaining how
to combine structured search with full-text search in the most efficient way.































































































Chapter 12. Structured Search



Structured search is about interrogating data that has inherent structure.
Dates, times, and numbers are all structured: they have a precise  format
that you can perform logical operations on.  Common operations include
comparing ranges of numbers or dates, or determining which of two values is
larger.


Text can be structured too.  A box of crayons has a discrete set of colors:
red, green, blue.  A blog post may be tagged with keywords
distributed and search.  Products in an ecommerce store have Universal
Product Codes (UPCs) or some other identifier that requires strict and
structured formatting.


With structured search, the answer to your question is always a yes or no;
something either belongs in the set or it does not.  Structured search does
not worry about document relevance or scoring; it simply includes or
excludes documents.


This should make sense logically.  A number can’t be more in a range than
any other number that falls in the same range.  It is either in the range—or it isn’t.  Similarly, for structured text, a value is either equal or it
isn’t. There is no concept of more similar.








Finding Exact Values


When working with exact values, you will be working with filters. Filters are
important because they are very, very fast.  Filters do not calculate
relevance (avoiding the entire scoring phase) and are easily cached. We’ll
talk about the performance benefits of filters later in “All About Caching”,
but for now, just keep in mind that you should use filters as often as you
can.










term Filter with Numbers


We are going to explore the term filter first because you will use it often.
This filter is capable of handling numbers, Booleans, dates, and text.


Let’s look at an example using numbers first by indexing some products.  These
documents have a price and a productID:


POST /my_store/products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10, "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20, "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30, "productID" : "QQPX-R-3956-#aD8" }


Our goal is to find all products with a certain price.  You may be familiar
with SQL if you are coming from a relational database background.  If we
expressed this query as an SQL query, it would look like this:


SELECT document
FROM   products
WHERE  price = 20


In the Elasticsearch query DSL, we use a term filter to accomplish the same
thing.  The term filter will look for the exact value that we specify.  By
itself, a term filter is simple. It accepts a field name and the value
that we wish to find:


{
    "term" : {
        "price" : 20
    }
}


The term filter isn’t very useful on its own, though.  As discussed in
“Query DSL”, the search API expects a query, not a filter. To
use our term filter, we need to wrap it with a
filtered query:


GET /my_store/products/_search
{
    "query" : {
        "filtered" : { [image: 1]
            "query" : {
                "match_all" : {} [image: 2]
            },
            "filter" : {
                "term" : { [image: 3]
                    "price" : 20
                }
            }
        }
    }
}


	[image: 1]

	The filtered query accepts both a query and a filter.


	[image: 2]

	A match_all is used to return all matching documents.  This is the default
behavior, so in future examples we will simply omit the query section.


	[image: 3]

	The term filter that we saw previously.  Notice how it is placed inside
the filter clause.





Once executed, the search results from this query are exactly what you would
expect: only document 2 is returned as a hit (because only 2 had a price
of 20):


"hits" : [
    {
        "_index" : "my_store",
        "_type" :  "products",
        "_id" :    "2",
        "_score" : 1.0, [image: 1]
        "_source" : {
          "price" :     20,
          "productID" : "KDKE-B-9947-#kL5"
        }
    }
]


	[image: 1]

	Filters do not perform scoring or relevance. The score comes from the
match_all query, which treats all docs as equal, so all results receive
a neutral score of 1.




















term Filter with Text


As mentioned at the top of this section, the term filter can match strings
just as easily as numbers.  Instead of price, let’s try to find products that
have a certain UPC identification code. To do this with SQL, we might use a
query like this:


SELECT product
FROM   products
WHERE  productID = "XHDK-A-1293-#fJ3"


Translated into the query DSL, we can try a similar query with the term
filter, like so:


GET /my_store/products/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "term" : {
                    "productID" : "XHDK-A-1293-#fJ3"
                }
            }
        }
    }
}


Except there is a little hiccup: we don’t get any results back!  Why is
that? The problem isn’t with the the term query; it is with the way
the data has been indexed.  If we use the analyze API (“Testing Analyzers”), we
can see that our UPC has been tokenized into smaller tokens:


GET /my_store/_analyze?field=productID
XHDK-A-1293-#fJ3


{
  "tokens" : [ {
    "token" :        "xhdk",
    "start_offset" : 0,
    "end_offset" :   4,
    "type" :         "<ALPHANUM>",
    "position" :     1
  }, {
    "token" :        "a",
    "start_offset" : 5,
    "end_offset" :   6,
    "type" :         "<ALPHANUM>",
    "position" :     2
  }, {
    "token" :        "1293",
    "start_offset" : 7,
    "end_offset" :   11,
    "type" :         "<NUM>",
    "position" :     3
  }, {
    "token" :        "fj3",
    "start_offset" : 13,
    "end_offset" :   16,
    "type" :         "<ALPHANUM>",
    "position" :     4
  } ]
}


There are a few important points here:



	
We have four distinct tokens instead of a single token representing the UPC.



	
All letters have been lowercased.



	
We lost the hyphen and the hash (#) sign.






So when our term filter looks for the exact value XHDK-A-1293-#fJ3, it
doesn’t find anything, because that token does not exist in our inverted index.
Instead, there are the four tokens listed previously.


Obviously, this is not what we want to happen when dealing with identification
codes, or any kind of precise enumeration.


To prevent this from happening, we need to tell Elasticsearch that this field
contains an exact value by  setting it to be not_analyzed. We saw this
originally in “Customizing Field Mappings”.  To do this, we need to first delete
our old index (because it has the incorrect mapping) and create a new one with
the correct mappings:


DELETE /my_store [image: 1]

PUT /my_store [image: 2]
{
    "mappings" : {
        "products" : {
            "properties" : {
                "productID" : {
                    "type" : "string",
                    "index" : "not_analyzed" [image: 3]
                }
            }
        }
    }

}


	[image: 1]

	Deleting the index first is required, since we cannot change mappings that
already exist.


	[image: 2]

	With the index deleted, we can re-create it with our custom mapping.


	[image: 3]

	Here we explicitly say that we don’t want productID to be analyzed.





Now we can go ahead and reindex our documents:


POST /my_store/products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10, "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20, "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30, "productID" : "QQPX-R-3956-#aD8" }


Only now will our term filter work as expected.  Let’s try it again on the
newly indexed data (notice, the query and filter have not changed at all, just
how the data is mapped):


GET /my_store/products/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "term" : {
                    "productID" : "XHDK-A-1293-#fJ3"
                }
            }
        }
    }
}


Since the productID field is not analyzed, and the term filter performs no
analysis, the query finds the exact match and returns document 1 as a hit.
Success!

















Internal Filter Operation


Internally, Elasticsearch is performing several operations when executing a
filter:


	
Find matching docs.


The term filter looks up the term XHDK-A-1293-#fJ3 in the inverted index
and retrieves the list of documents that contain that term.  In this case,
only document 1 has the term we are looking for.



	
Build a bitset.


The filter then builds a bitset--an array of 1s and 0s—that
describes which documents contain the term.  Matching documents receive a  1
bit.  In our example, the bitset would be [1,0,0,0].



	
Cache the bitset.


Last, the bitset is stored in memory, since we can use this in the future
and skip steps 1 and 2.  This adds a lot of performance and makes filters very
fast.







When executing a filtered query, the filter is executed before the
query. The resulting bitset is given to the query, which uses it to simply
skip over any documents that have already been excluded by the filter. This is
one of the ways that filters can improve performance.  Fewer documents
evaluated by the query  means faster response times.
























Combining Filters


The previous two examples showed a single filter in use. In practice, you
will probably need to filter on multiple values or fields.  For example, how
would you express this SQL in Elasticsearch?


SELECT product
FROM   products
WHERE  (price = 20 OR productID = "XHDK-A-1293-#fJ3")
  AND  (price != 30)


In these situations, you will need the bool filter.  This is a compound
filter that accepts other filters as arguments, combining them in various
Boolean combinations.










Bool Filter


The bool filter is composed of three sections:


{
   "bool" : {
      "must" :     [],
      "should" :   [],
      "must_not" : [],
   }
}


	must

	
All of these clauses must match. The equivalent of AND.



	must_not

	
All of these clauses must not match. The equivalent of NOT.



	should

	
At least one of these clauses must match. The equivalent of OR.






And that’s it! When you need multiple filters, simply place them into the
different sections of the bool filter.

Note

Each section of the bool filter is optional (for example, you can have a must
clause and nothing else), and each section can contain a single filter or an
array of filters.




To replicate the preceding SQL example, we will take the two term filters that
we used previously and place them inside the should clause of a bool
filter, and add another clause to deal with the NOT condition:


GET /my_store/products/_search
{
   "query" : {
      "filtered" : { [image: 1]
         "filter" : {
            "bool" : {
              "should" : [
                 { "term" : {"price" : 20}}, [image: 2]
                 { "term" : {"productID" : "XHDK-A-1293-#fJ3"}} [image: 2]
              ],
              "must_not" : {
                 "term" : {"price" : 30} [image: 3]
              }
           }
         }
      }
   }
}


	[image: 1]

	Note that we still need to use a filtered query to wrap everything.


	[image: 2]

	These two term filters are children of the bool filter, and since they
are placed inside the should clause, at least one of them needs to match.


	[image: 3]

	If a product has a price of 30, it is automatically excluded because it
matches a must_not clause.





Our search results return two hits, each document satisfying a different clause
in the bool filter:


"hits" : [
    {
        "_id" :     "1",
        "_score" :  1.0,
        "_source" : {
          "price" :     10,
          "productID" : "XHDK-A-1293-#fJ3" [image: 1]
        }
    },
    {
        "_id" :     "2",
        "_score" :  1.0,
        "_source" : {
          "price" :     20, [image: 2]
          "productID" : "KDKE-B-9947-#kL5"
        }
    }
]


	[image: 1]

	Matches the term filter for productID = "XHDK-A-1293-#fJ3"


	[image: 2]

	Matches the term filter for price = 20




















Nesting Boolean Filters


Even though bool is a compound filter and accepts children filters, it is
important to understand that bool is just a filter itself.  This means you
can nest bool filters inside other bool filters, giving you the
ability to make arbitrarily complex Boolean logic.


Given this SQL statement:


SELECT document
FROM   products
WHERE  productID      = "KDKE-B-9947-#kL5"
  OR (     productID = "JODL-X-1937-#pV7"
       AND price     = 30 )


We can translate it into a pair of nested bool filters:


GET /my_store/products/_search
{
   "query" : {
      "filtered" : {
         "filter" : {
            "bool" : {
              "should" : [
                { "term" : {"productID" : "KDKE-B-9947-#kL5"}}, [image: 1]
                { "bool" : { [image: 1]
                  "must" : [
                    { "term" : {"productID" : "JODL-X-1937-#pV7"}}, [image: 2]
                    { "term" : {"price" : 30}} [image: 2]
                  ]
                }}
              ]
           }
         }
      }
   }
}


	[image: 1]

	Because the term and the bool are sibling clauses inside the first
Boolean should, at least one of these filters must match for a document
to be a hit.


	[image: 2]

	These two term clauses are siblings in a must clause, so they both
have to match for a document to be returned as a hit.





The results show us two documents, one matching each of the should clauses:


"hits" : [
    {
        "_id" :     "2",
        "_score" :  1.0,
        "_source" : {
          "price" :     20,
          "productID" : "KDKE-B-9947-#kL5" [image: 1]
        }
    },
    {
        "_id" :     "3",
        "_score" :  1.0,
        "_source" : {
          "price" :      30, [image: 2]
          "productID" : "JODL-X-1937-#pV7" [image: 2]
        }
    }
]


	[image: 1]

	This productID matches the term in the first bool.


	[image: 2]

	These two fields match the term filters in the nested bool.





This was a simple example, but it demonstrates how Boolean filters can be
used as building blocks to construct complex logical conditions.
























Finding Multiple Exact Values


The term filter is useful for finding a single value, but often you’ll  want
to search for multiple values.  What if you want to find documents that have a
price of $20 or $30?


Rather than using multiple term filters, you can instead use a single terms
filter (note the s at the end).  The terms filter is simply the plural
version of the singular term filter.


It looks nearly identical to a vanilla term too.  Instead of
specifying a single price, we are now specifying an array of values:


{
    "terms" : {
        "price" : [20, 30]
    }
}


And like the term filter, we will place it inside a filtered query to
 use it:


GET /my_store/products/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "terms" : { [image: 1]
                    "price" : [20, 30]
                }
            }
        }
    }
}


	[image: 1]

	The terms filter as seen previously, but placed inside the filtered query





The query will return the second, third, and fourth documents:


"hits" : [
    {
        "_id" :    "2",
        "_score" : 1.0,
        "_source" : {
          "price" :     20,
          "productID" : "KDKE-B-9947-#kL5"
        }
    },
    {
        "_id" :    "3",
        "_score" : 1.0,
        "_source" : {
          "price" :     30,
          "productID" : "JODL-X-1937-#pV7"
        }
    },
    {
        "_id":     "4",
        "_score":  1.0,
        "_source": {
           "price":     30,
           "productID": "QQPX-R-3956-#aD8"
        }
     }
]










Contains, but Does Not Equal


It is important to understand that term and terms are contains operations,
not equals.  What does that mean?


If you have a term filter for { "term" : { "tags" : "search" } }, it will match
both of the following documents:


{ "tags" : ["search"] }
{ "tags" : ["search", "open_source"] } [image: 1]


	[image: 1]

	This document is returned, even though it has terms other than search.





Recall how the term filter works: it checks the inverted index for all
documents that contain a term, and then constructs a bitset.  In our simple
example, we have the following inverted index:





	Token

	DocIDs




	open_source

	2




	search

	1,2







When a term filter is executed for the token search, it goes straight to the
corresponding entry in the inverted index and extracts the associated doc IDs.
As you can see, both document 1 and document 2 contain the token in the inverted index.
Therefore, they are both returned as a result.

Note

The nature of an inverted index also means that entire field equality is rather
difficult to calculate.  How would you determine whether a particular document
contains only your request term?  You would have to find the term in
the inverted index, extract the document IDs, and then scan every row in the
inverted index, looking for those IDs to see whether a doc has any other terms.


As you might imagine, that would be tremendously inefficient and expensive.
For that reason, term and terms are must contain operations, not
must equal exactly.



















Equals Exactly


If you do want that behavior—entire field equality—the best way to
accomplish it involves indexing a secondary field.  In this field, you index the
number of values that your field contains.  Using our two previous documents,
we now include a field that maintains the number of tags:


{ "tags" : ["search"], "tag_count" : 1 }
{ "tags" : ["search", "open_source"], "tag_count" : 2 }


Once you have the count information indexed, you can construct a bool filter
that enforces the appropriate number of terms:


GET /my_index/my_type/_search
{
    "query": {
        "filtered" : {
            "filter" : {
                 "bool" : {
                    "must" : [
                        { "term" : { "tags" : "search" } }, [image: 1]
                        { "term" : { "tag_count" : 1 } } [image: 2]
                    ]
                }
            }
        }
    }
}


	[image: 1]

	Find all documents that have the term search.


	[image: 2]

	But make sure the document has only one tag.





This query will now match only the document that has a single tag that is
search, rather than any document that contains search.
























Ranges


When dealing with numbers in this chapter, we have so far searched for only
exact numbers.  In practice,  filtering on ranges is often more useful.  For
example, you might want to find all products with a price greater than $20 and less than $40.


In SQL terms, a range can be expressed as follows:


SELECT document
FROM   products
WHERE  price BETWEEN 20 AND 40


Elasticsearch has a range filter, which, unsurprisingly, allows you to
filter ranges:


"range" : {
    "price" : {
        "gt" : 20,
        "lt" : 40
    }
}


The range filter supports both inclusive and exclusive ranges, through
combinations of the following options:



	
gt: > greater than



	
lt: < less than



	
gte: >= greater than or equal to



	
lte: <= less than or equal to






GET /my_store/products/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "range" : {
                    "price" : {
                        "gte" : 20,
                        "lt"  : 40
                    }
                }
            }
        }
    }
}


If you need an unbounded range (for example, just >20), omit one of the
boundaries:


"range" : {
    "price" : {
        "gt" : 20
    }
}










Ranges on Dates


The range filter can be used on date fields too:


"range" : {
    "timestamp" : {
        "gt" : "2014-01-01 00:00:00",
        "lt" : "2014-01-07 00:00:00"
    }
}


When used on date fields, the range filter supports date math operations.
For example, if we want to find all documents that have a timestamp sometime
in the last hour:


"range" : {
    "timestamp" : {
        "gt" : "now-1h"
    }
}


This filter will now constantly find all documents with a timestamp greater
than the current time minus 1 hour, making the filter a sliding window
across your documents.


Date math can also be applied to actual dates, rather than a placeholder like
now. Just add a double pipe (||) after the date and follow it with a date
math expression:


"range" : {
    "timestamp" : {
        "gt" : "2014-01-01 00:00:00",
        "lt" : "2014-01-01 00:00:00||+1M" [image: 1]
    }
}


	[image: 1]

	Less than January 1, 2014 plus one month





Date math is calendar aware, so it knows the number of days in each month,
days in a year, and so forth.  More details about working with dates can be found in
the date format reference documentation.

















Ranges on Strings


The range filter can also operate on string fields.  String ranges are
calculated lexicographically  or alphabetically.  For example, these values
are sorted in lexicographic order:



	
5, 50, 6, B, C, a, ab, abb, abc, b





Note

Terms in the inverted index are sorted in lexicographical order, which is why
string ranges use this order.




If we want a range from a up to but not including b, we can use the same
range filter syntax:


"range" : {
    "title" : {
        "gte" : "a",
        "lt" :  "b"
    }
}


Be Careful of Cardinality

Numeric and date fields are indexed in such a way that ranges are efficient
to calculate.  This is not the case for string fields, however.  To perform
a range on a string field, Elasticsearch is effectively performing a term
filter for every term that falls in the range.  This is much slower than
a date or numeric range.


String ranges are fine on a field with low cardinality—a small number of
unique terms.  But the more unique terms you have, the slower the string range
will be.


























Dealing with Null Values


Think back to our earlier example, where documents have a field named tags.
This is a multivalue field.  A document may have one tag, many tags, or
potentially no tags at all. If a field has no values, how is it stored in an
inverted index?


That’s a trick question, because the answer is, it isn’t stored at all. Let’s
look at that inverted index from the previous section:





	Token

	DocIDs




	open_source

	2




	search

	1,2







How would you store a field that doesn’t exist in that data structure?  You
can’t!  An inverted index is simply a list of tokens and the documents that
contain them.  If a field doesn’t exist, it doesn’t hold any tokens, which
means it won’t be represented in an inverted index data structure.


Ultimately, this means that a null, [] (an empty
array), and [null] are all equivalent. They simply don’t exist in the
inverted index!


Obviously, the world is not simple, and data is often missing fields, or contains
explicit nulls or empty arrays. To deal with these situations, Elasticsearch has
a few tools to work with null or missing values.










exists Filter


The first tool in your arsenal is the exists filter.  This filter will return
documents that have any value in the specified field. Let’s use the tagging example
and index some example documents:


POST /my_index/posts/_bulk
{ "index": { "_id": "1"              }}
{ "tags" : ["search"]                }  [image: 1]
{ "index": { "_id": "2"              }}
{ "tags" : ["search", "open_source"] }  [image: 2]
{ "index": { "_id": "3"              }}
{ "other_field" : "some data"        }  [image: 3]
{ "index": { "_id": "4"              }}
{ "tags" : null                      }  [image: 4]
{ "index": { "_id": "5"              }}
{ "tags" : ["search", null]          }  [image: 5]


	[image: 1]

	The tags field has one value.


	[image: 2]

	The tags field has two values.


	[image: 3]

	The tags field is missing altogether.


	[image: 4]

	The tags field is set to null.


	[image: 5]

	The tags field has one value and a null.





The resulting inverted index for our tags field will look like this:





	Token

	DocIDs




	open_source

	2




	search

	1,2,5







Our objective is to find all documents where a tag is set.  We don’t care what
the tag is, so long as it exists within the document.  In SQL parlance,
we would use an IS NOT NULL query:


SELECT tags
FROM   posts
WHERE  tags IS NOT NULL


In Elasticsearch, we use the exists filter:


GET /my_index/posts/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "exists" : { "field" : "tags" }
            }
        }
    }
}


Our query returns three documents:


"hits" : [
    {
      "_id" :     "1",
      "_score" :  1.0,
      "_source" : { "tags" : ["search"] }
    },
    {
      "_id" :     "5",
      "_score" :  1.0,
      "_source" : { "tags" : ["search", null] } [image: 1]
    },
    {
      "_id" :     "2",
      "_score" :  1.0,
      "_source" : { "tags" : ["search", "open source"] }
    }
]


	[image: 1]

	Document 5 is returned even though it contains a null value. The field
exists because a real-value tag was indexed, so the null had no impact
on the filter.





The results are easy to understand.  Any document that has terms in the
tags field was returned as a hit.  The only two documents that were excluded
were documents 3 and 4.

















missing Filter


The missing filter is essentially the inverse of exists: it returns
documents where there is no value for a particular field, much like this
SQL:


SELECT tags
FROM   posts
WHERE  tags IS  NULL


Let’s swap the exists filter for a missing filter from our previous example:


GET /my_index/posts/_search
{
    "query" : {
        "filtered" : {
            "filter": {
                "missing" : { "field" : "tags" }
            }
        }
    }
}


And, as you would expect, we get back the two docs that have no real values
in the tags field—documents 3 and 4:


"hits" : [
    {
      "_id" :     "3",
      "_score" :  1.0,
      "_source" : { "other_field" : "some data" }
    },
    {
      "_id" :     "4",
      "_score" :  1.0,
      "_source" : { "tags" : null }
    }
]


When null Means null

Sometimes you need to be able to distinguish between a field that doesn’t have
a value, and a field that has been explicitly set to null. With the default
behavior that we saw previously, this is impossible; the data is lost. Luckily,
there is an option that we can set that replaces explicit  null values with
a placeholder value of our choosing.


When specifying the mapping for a string, numeric, Boolean, or date field, you
can also set a null_value that will be used whenever an explicit null
value is encountered.  A field without a value will still be excluded from the
inverted index.


When choosing a suitable null_value, ensure the following:



	
It matches the field’s type.  You can’t use a string null_value in a
field of type date.



	
It is different from the normal values that the field may contain, to
avoid confusing real values with null values.























exists/missing on Objects


The exists and missing filters also work on inner objects, not just core
types.  With the following document


{
   "name" : {
      "first" : "John",
      "last" :  "Smith"
   }
}


you can check for the existence of name.first and name.last but also just
name. However, in “Types and Mappings”, we said that an object like the preceding one is
flattened internally into a simple field-value structure, much like this:


{
   "name.first" : "John",
   "name.last"  : "Smith"
}


So how can we use an exists or missing filter on the name field, which
doesn’t really exist in the inverted index?


The reason that it works is that a filter like


{
    "exists" : { "field" : "name" }
}


is really executed as


{
    "bool": {
        "should": [
            { "exists": { "field": { "name.first" }}},
            { "exists": { "field": { "name.last"  }}}
        ]
    }
}


That also means that if first and last were both empty, the name
namespace would not exist.
























All About Caching


Earlier in this chapter (“Internal Filter Operation”), we briefly discussed
how filters are calculated.  At their heart is a bitset representing which
documents match the filter. Elasticsearch aggressively caches these bitsets for later use.  Once cached,
these bitsets can be reused wherever the same filter is used, without having
to reevaluate the entire filter again.


These cached bitsets are “smart”: they are updated incrementally. As you
index new documents, only those new documents need to be added to the existing
bitsets, rather than having to recompute the entire cached filter over and
over. Filters are real-time like the rest of the system; you don’t need to
worry about cache expiry.










Independent Filter Caching


Each filter is calculated and cached independently, regardless of where it is
used. If two different queries use the same filter, the same filter bitset
will be reused.  Likewise, if a single query uses the same filter in multiple
places, only one bitset is calculated and then reused.


Let’s look at this example query, which looks for emails that are either of the following:



	
In the inbox and have not been read



	
Not in the inbox but have been marked as important






"bool": {
   "should": [
      { "bool": {
            "must": [
               { "term": { "folder": "inbox" }}, [image: 1]
               { "term": { "read": false }}
            ]
      }},
      { "bool": {
            "must_not": {
               "term": { "folder": "inbox" } [image: 1]
            },
            "must": {
               "term": { "important": true }
            }
      }}
   ]
}


	[image: 1]

	These two filters are identical and will use the same bitset.





Even though one of the inbox clauses is a must clause and the other is a
must_not clause, the two clauses themselves are identical. This means that
the bitset is calculated once for the first clause that is executed, and then
the cached bitset is used for the other clause.  By the time this query is run
a second time, the inbox filter is already cached and so both clauses will use
the cached bitset.


This ties in nicely with the composability of the query DSL.  It is easy to
move filters around, or reuse the same filter in multiple places within the
same query.  This isn’t just convenient to the developer—it has direct
performance benefits.

















Controlling Caching


Most leaf filters—those dealing directly with fields like the term
filter—are cached, while compound filters, like the bool filter, are not.

Note

Leaf filters have to consult the inverted index on disk, so it makes sense to
cache them. Compound filters, on the other hand, use fast bit logic to combine
the bitsets resulting from their inner clauses, so it is efficient to
recalculate them every time.




Certain leaf filters, however, are not cached by default, because it
doesn’t make sense to do so:


	Script filters

	
The results from script filters cannot
be cached because the meaning of the script is opaque to Elasticsearch.



	Geo-filters

	
The geolocation filters, which we cover in more detail in Part V, are
usually used to filter results based on the geolocation of a specific user.
Since each user has a unique geolocation, it is unlikely that geo-filters will be reused, so it makes no sense to cache them.



	Date ranges

	
Date ranges that use the now function (for example "now-1h"), result in values
accurate to the millisecond. Every time the filter is run, now returns a new
time. Older filters will never be reused, so caching is disabled by default.
However, when using now with rounding (for example, now/d rounds to the nearest day),
caching is enabled by default.






Sometimes the default caching strategy is not correct. Perhaps you have a
complicated bool expression that is reused several times in the same query.
Or you have a filter on a date field that will never be reused.  The default
caching strategy can be overridden on almost any filter by setting the
_cache flag:


{
    "range" : {
        "timestamp" : {
            "gt" : "2014-01-02 16:15:14" [image: 1]
        },
        "_cache": false [image: 2]
    }
}


	[image: 1]

	It is unlikely that we will reuse this exact timestamp.


	[image: 2]

	Disable caching of this filter.





Later chapters provide examples of when it can make sense to
override the default caching strategy.
























Filter Order


The order of filters in a bool clause is important for performance. More-specific filters should be placed before less-specific filters in order to
exclude as many documents as possible, as early as possible.


If Clause A could match 10 million documents, and Clause B could match
only 100 documents, then Clause B should be placed before Clause A.


Cached filters are very fast, so they should be placed before filters that
are not cacheable.  Imagine that we have an index that contains one month’s
worth of log events. However, we’re mostly interested only in log events from
the previous hour:


GET /logs/2014-01/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "range" : {
                    "timestamp" : {
                        "gt" : "now-1h"
                    }
                }
            }
        }
    }
}


This filter is not cached because it uses the now function, the value of
which changes every millisecond. That means that we have to examine one
month’s worth of log events every time we run this query!


We could make this much more efficient by combining it with a cached filter:
we can exclude most of the month’s data by adding a filter that uses a fixed
point in time, such as midnight last night:


"bool": {
    "must": [
        { "range" : {
            "timestamp" : {
                "gt" : "now-1h/d" [image: 1]
            }
        }},
        { "range" : {
            "timestamp" : {
                "gt" : "now-1h" [image: 2]
            }
        }}
    ]
}


	[image: 1]

	This filter is cached because it uses now rounded to midnight.


	[image: 2]

	This filter is not cached because it uses now without rounding.





The now-1h/d clause rounds to the previous midnight and so excludes all documents
created before today.  The resulting bitset is cached because now is used
with rounding, which means that it is executed only once a day, when the value
for midnight-last-night changes.  The now-1h clause isn’t cached because
now produces a time accurate to the nearest millisecond. However, thanks to
the first filter, this second filter need only check documents that have been
created since midnight.


The order of these clauses is important. This approach works only because the
since-midnight clause comes before the last-hour clause. If they were the
other  way around, then the last-hour clause would need to examine all
documents in the index, instead of just documents created since midnight.












Chapter 13. Full-Text Search



Now that we have covered the simple case of searching for structured data,
it is time to explore full-text search: how to search within full-text fields in order to find the most relevant documents.


The two most important aspects of full-text search are as follows:


	Relevance

	
The ability to rank results by how relevant they are to
the given query, whether relevance is calculated using
TF/IDF (see “What Is Relevance?”), proximity to a geolocation,
fuzzy similarity, or some other algorithm.



	Analysis

	
The process of converting a block of text into distinct, normalized tokens
(see “Analysis and Analyzers”) in order to (a) create an inverted index and
(b) query the inverted index.






As soon as we talk about either relevance or analysis, we are in the territory
of queries, rather than filters.








Term-Based Versus Full-Text


While all queries perform some sort of relevance calculation, not all queries
have an analysis phase. Besides specialized queries like the bool or
function_score queries, which don’t operate on text at all, textual queries can
be broken down into two families:


	Term-based queries

	

Queries like the term or fuzzy queries are low-level queries that have no
analysis phase. They operate on a single term. A term query for the term
Foo looks for that exact term in the inverted index and calculates the
TF/IDF relevance _score for each document that contains the term.


It is important to remember that the term query looks in the inverted index
for the exact term only; it won’t match any variants like foo or
FOO.  It doesn’t matter how the term came to be in the index, just that it
is.  If you were to index ["Foo","Bar"] into an exact value not_analyzed
field, or Foo Bar into an analyzed field with the whitespace analyzer,
both would result in having the two terms Foo and Bar in the inverted
index.






	Full-text queries

	

Queries like the match or query_string queries are high-level queries
that understand the mapping of a field:



	
If you use them to query a date or integer field, they will treat the
query string as a date or integer, respectively.



	
If you query an exact value (not_analyzed) string field, they will treat
the whole query string as a single term.



	
But if you query a full-text (analyzed) field, they will first pass the
query string through the appropriate analyzer to produce the list of terms
to be queried.






Once the query has assembled a list of terms, it executes the appropriate
low-level query for each of these terms, and then combines  their results to
produce the final relevance score for each document.


We will discuss this process in more detail in the following chapters.









You seldom need to use the term-based queries directly. Usually you want to
query full text, not individual terms, and this is easier to do with the
high-level full-text queries (which end up using term-based queries
internally).

Note

If you do find yourself wanting to use a query on an exact value
not_analyzed field, think about whether you really want a query or a filter.


Single-term queries usually represent binary yes/no questions and are
almost always better expressed as a filter, so that they can benefit from
filter caching:


GET /_search
{
    "query": {
        "filtered": {
            "filter": {
                "term": { "gender": "female" }
            }
        }
    }
}



















The match Query


The match query is the go-to query—the first query that you should
reach for whenever you need to query any field. It is a high-level full-text
query, meaning that it knows how to deal with both full-text fields and exact-value fields.


That said, the main use case for the match query is for full-text search. So
let’s take a look at how full-text search works with a simple example.










Index Some Data


First, we’ll create a new index and index some documents using the
bulk API:


DELETE /my_index [image: 1]

PUT /my_index
{ "settings": { "number_of_shards": 1 }} [image: 2]

POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "title": "The quick brown fox" }
{ "index": { "_id": 2 }}
{ "title": "The quick brown fox jumps over the lazy dog" }
{ "index": { "_id": 3 }}
{ "title": "The quick brown fox jumps over the quick dog" }
{ "index": { "_id": 4 }}
{ "title": "Brown fox brown dog" }


	[image: 1]

	Delete the index in case it already exists.


	[image: 2]

	Later, in “Relevance Is Broken!”, we explain why
we created this index with only one primary shard.




















A Single-Word Query


Our first example explains what happens when we use the match query to
search within a full-text field for a single word:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": "QUICK!"
        }
    }
}


Elasticsearch executes the preceding match query as follows:


	
Check the field type.


The title field is a full-text (analyzed) string field, which means that
the query string should be analyzed too.



	
Analyze the query string.


The query string QUICK! is passed through the standard analyzer, which
results in the single term quick. Because we have a just a single term,
the match query can be executed as a single low-level term query.



	
Find matching docs.


The term query looks up quick in the inverted index and retrieves the
list of documents that contain that term—in this case, documents 1, 2, and
3.



	
Score each doc.


The term query calculates the relevance _score for each matching document,
by combining the term frequency (how often quick appears in the title
field of each document), with the inverse document frequency (how often
quick appears in the title field in all documents in the index), and the
length of each field (shorter fields are considered more relevant).
See “What Is Relevance?”.







This process gives us the following (abbreviated) results:


"hits": [
 {
    "_id":      "1",
    "_score":   0.5, [image: 1]
    "_source": {
       "title": "The quick brown fox"
    }
 },
 {
    "_id":      "3",
    "_score":   0.44194174, [image: 2]
    "_source": {
       "title": "The quick brown fox jumps over the quick dog"
    }
 },
 {
    "_id":      "2",
    "_score":   0.3125, [image: 2]
    "_source": {
       "title": "The quick brown fox jumps over the lazy dog"
    }
 }
]


	[image: 1]

	Document 1 is most relevant because its title field is short, which means
that quick represents a large portion of its content.


	[image: 2]

	Document 3 is more relevant than document 2 because quick appears twice.



























Multiword Queries


If we could search for only one word at a time, full-text search would be
pretty inflexible. Fortunately, the match query makes multiword queries
just as simple:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": "BROWN DOG!"
        }
    }
}


The preceding query returns all four documents in the results list:


{
  "hits": [
     {
        "_id":      "4",
        "_score":   0.73185337, [image: 1]
        "_source": {
           "title": "Brown fox brown dog"
        }
     },
     {
        "_id":      "2",
        "_score":   0.47486103, [image: 2]
        "_source": {
           "title": "The quick brown fox jumps over the lazy dog"
        }
     },
     {
        "_id":      "3",
        "_score":   0.47486103, [image: 2]
        "_source": {
           "title": "The quick brown fox jumps over the quick dog"
        }
     },
     {
        "_id":      "1",
        "_score":   0.11914785, [image: 3]
        "_source": {
           "title": "The quick brown fox"
        }
     }
  ]
}


	[image: 1]

	Document 4 is the most relevant because it contains "brown" twice and "dog"
once.


	[image: 2]

	Documents 2 and 3 both contain brown and dog once each, and the title
field is the same length in both docs, so they have the same score.


	[image: 3]

	Document 1 matches even though it contains only brown, not dog.





Because the match query has to look for two terms—["brown","dog"]—internally it has to execute two term queries and combine their individual
results into the overall result. To do this, it wraps the two term queries
in a bool query, which we examine in detail in “Combining Queries”.


The important thing to take away from this is that any document whose
title field contains at least one of the specified terms will match the
query.  The more terms that match, the more relevant the document.










Improving Precision


Matching any document that contains any of the query terms may result in  a
long tail of seemingly irrelevant results.  It’s a shotgun approach to search.
Perhaps we want to show only documents that contain all of the query terms.
In other words, instead of brown OR dog, we want to return only documents
that match brown AND dog.


The match query accepts an operator parameter that defaults to or.
You can change it to and to require that all specified terms must match:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": {      [image: 1]
                "query":    "BROWN DOG!",
                "operator": "and"
            }
        }
    }
}


	[image: 1]

	The structure of the match query has to change slightly in order to
accommodate the operator parameter.





This query would exclude document 1, which contains only one of the two terms.

















Controlling Precision


The choice between all and any is a bit too black-or-white. What if the
user specified five query terms, and a document contains only four of them?
Setting operator to and would exclude this document.


Sometimes that is exactly what you want, but for most full-text search use
cases, you want to include documents that may be relevant but exclude those
that are unlikely to be relevant.  In other words, we need something
in-between.


The match query supports the minimum_should_match parameter, which allows
you to specify the number of terms that must match for a document to be considered
relevant.  While you can specify an absolute number of terms, it usually makes
sense to specify a percentage instead, as you have no control over the number of words the user may enter:


GET /my_index/my_type/_search
{
  "query": {
    "match": {
      "title": {
        "query":                "quick brown dog",
        "minimum_should_match": "75%"
      }
    }
  }
}


When specified as a percentage, minimum_should_match does the right thing:
in the preceding example with three terms, 75% would be rounded down to 66.6%,
or two out of the three terms. No matter what you set it to, at least one term
must match for a document to be considered a match.

Note

The minimum_should_match parameter is flexible, and different rules can
be applied depending on the number of terms the user enters.  For the full
documentation see the
minimum_should_match reference documentation.




To fully understand how the match query handles multiword queries, we need
to look at how to combine multiple queries with the bool query.
























Combining Queries


In “Combining Filters” we discussed how to, use the bool filter to combine
multiple filter clauses with and, or, and not logic.  In query land, the
bool query does a similar job but with one important difference.


Filters make a binary decision: should this document be included in the
results list or not? Queries, however, are more subtle. They decide not only
whether to include a document, but also how relevant that document is.


Like the filter equivalent, the bool query accepts multiple query clauses
under the must, must_not, and should parameters.  For instance:


GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "must":     { "match": { "title": "quick" }},
      "must_not": { "match": { "title": "lazy"  }},
      "should": [
                  { "match": { "title": "brown" }},
                  { "match": { "title": "dog"   }}
      ]
    }
  }
}


The results from the preceding query include any document whose title field
contains the term quick, except for those that also contain lazy. So
far, this is pretty similar to how the bool filter works.


The difference comes in with the two should clauses, which say that: a document
is not required to contain either brown or dog, but if it does, then
it should be considered more relevant:


{
  "hits": [
     {
        "_id":      "3",
        "_score":   0.70134366, [image: 1]
        "_source": {
           "title": "The quick brown fox jumps over the quick dog"
        }
     },
     {
        "_id":      "1",
        "_score":   0.3312608,
        "_source": {
           "title": "The quick brown fox"
        }
     }
  ]
}


	[image: 1]

	Document 3 scores higher because it contains both brown and dog.













Score Calculation


The bool query calculates the relevance _score for each document by adding
together the _score from all of the matching must and should clauses,
and then dividing by the total number of must and should clauses.


The must_not clauses do not affect the score; their only purpose is to
exclude documents that might otherwise have been included.

















Controlling Precision


All the must clauses must match, and all the must_not clauses must not
match, but how many should clauses should match? By default, none of the should clauses are required to match, with one
exception: if there are no must clauses, then at least one should clause
must match.


Just as we can control the precision of the match query,
we can control how many should clauses need to match by using the
minimum_should_match parameter, either as an absolute number or as a
percentage:


GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title": "brown" }},
        { "match": { "title": "fox"   }},
        { "match": { "title": "dog"   }}
      ],
      "minimum_should_match": 2 [image: 1]
    }
  }
}


	[image: 1]

	This could also be expressed as a percentage.





The results would include only documents whose title field contains "brown"
AND "fox", "brown" AND "dog", or "fox" AND "dog". If a document contains
all three, it would be considered more relevant than those that contain
just two of the three.
























How match Uses bool


By now, you have probably realized that multiword match
queries simply wrap the generated term queries in a bool query. With the
default or operator, each term query is added as a should clause, so
at least one clause must match. These two queries are equivalent:


{
    "match": { "title": "brown fox"}
}


{
  "bool": {
    "should": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }}
    ]
  }
}


With the and operator, all the term queries are added as must clauses,
so all clauses must match. These two queries are equivalent:


{
    "match": {
        "title": {
            "query":    "brown fox",
            "operator": "and"
        }
    }
}


{
  "bool": {
    "must": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }}
    ]
  }
}


And if the minimum_should_match parameter is specified, it is passed
directly through to the bool query, making these two queries equivalent:


{
    "match": {
        "title": {
            "query":                "quick brown fox",
            "minimum_should_match": "75%"
        }
    }
}


{
  "bool": {
    "should": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }},
      { "term": { "title": "quick" }}
    ],
    "minimum_should_match": 2 [image: 1]
  }
}


	[image: 1]

	Because there are only three clauses, the minimum_should_match
value of 75% in the match query is rounded down to 2.
At least two out of the three should  clauses must match.





Of course, we would normally write these types of queries by using the match
query, but understanding how the match query works internally lets you take
control of the process when you need to. Some things can’t be
done with a single match query, such as give more weight to some query terms
than to others. We will look at an example of this in the next section.

















Boosting Query Clauses


Of course, the bool query isn’t restricted to combining simple one-word
match queries. It can combine any other query, including other bool
queries.  It is commonly used to fine-tune the relevance _score for each
document by combining the scores from several distinct queries.


Imagine that we want to search for documents about “full-text search,”  but we
want to give more weight to documents that also mention “Elasticsearch” or
“Lucene.” By more weight, we mean that documents mentioning
“Elasticsearch” or “Lucene” will receive a higher relevance _score than
those that don’t, which means that they will appear higher in the list of
results.


A simple bool query allows us to write this fairly complex logic as follows:


GET /_search
{
    "query": {
        "bool": {
            "must": {
                "match": {
                    "content": { [image: 1]
                        "query":    "full text search",
                        "operator": "and"
                    }
                }
            },
            "should": [ [image: 2]
                { "match": { "content": "Elasticsearch" }},
                { "match": { "content": "Lucene"        }}
            ]
        }
    }
}


	[image: 1]

	The content field must contain all of the words full, text, and search.


	[image: 2]

	If the content field also contains Elasticsearch or Lucene,
the document will receive a higher _score.





The more should clauses that match, the more relevant the document.  So far,
so good.


But what if we want to give more weight to the docs that contain Lucene and
even more weight to the docs containing Elasticsearch?


We can control the relative weight of any query clause by specifying a boost
value, which defaults to 1. A boost value greater than 1 increases the
relative weight of that clause.  So we could  rewrite the preceding query as
follows:


GET /_search
{
    "query": {
        "bool": {
            "must": {
                "match": {  [image: 1]
                    "content": {
                        "query":    "full text search",
                        "operator": "and"
                    }
                }
            },
            "should": [
                { "match": {
                    "content": {
                        "query": "Elasticsearch",
                        "boost": 3 [image: 2]
                    }
                }},
                { "match": {
                    "content": {
                        "query": "Lucene",
                        "boost": 2 [image: 3]
                    }
                }}
            ]
        }
    }
}


	[image: 1]

	These clauses use the default boost of 1.


	[image: 2]

	This clause is the most important, as it has the highest boost.


	[image: 3]

	This clause is more important than the default, but not as important
as the Elasticsearch clause.




Note

The boost parameter is used to increase the relative weight of a clause
(with a boost greater than 1) or decrease the relative weight (with a
boost between 0 and 1), but the increase or decrease is not linear. In
other words, a boost of 2 does not result in double the _score.


Instead, the new _score is normalized after the boost is applied. Each
type of query has its own normalization algorithm, and the details are beyond
the scope of this book. Suffice to say that a higher boost value results in
a higher _score.


If you are implementing your own scoring model not based on TF/IDF and you
need more control over the boosting process, you can use the
function_score query to manipulate a document’s
boost without the normalization step.




We present other ways of combining queries in the next chapter,
Chapter 14. But first, let’s take a look at the other important
feature of queries: text analysis.

















Controlling Analysis


Queries can find only terms that actually exist in the inverted index, so it
is important to ensure that the same analysis process is applied both to the
document at index time, and to the query string at search time so that the
terms in the query match the terms in the inverted index.


Although we say document, analyzers are determined per field. Each
field can have a different analyzer, either by configuring a specific analyzer
for that field or by falling back on the type, index, or node defaults.  At
index time, a field’s value is analyzed by using the configured or default
analyzer for that field.


For instance, let’s add a new field to my_index:


PUT /my_index/_mapping/my_type
{
    "my_type": {
        "properties": {
            "english_title": {
                "type":     "string",
                "analyzer": "english"
            }
        }
    }
}


Now we can compare how values in the english_title field and the title field are
analyzed at index time by using the analyze API to analyze the word Foxes:


GET /my_index/_analyze?field=my_type.title   [image: 1]
Foxes

GET /my_index/_analyze?field=my_type.english_title [image: 2]
Foxes


	[image: 1]

	Field title, which uses the default standard analyzer, will return the
term foxes.


	[image: 2]

	Field english_title, which uses the english analyzer, will return the term
fox.





This means that, were we to run a low-level term query for the exact term
fox, the english_title field would match but the title field would
not.


High-level queries like the match query understand field mappings and can
apply the correct analyzer for each field being queried. We can see this
in action with the validate-query API:


GET /my_index/my_type/_validate/query?explain
{
    "query": {
        "bool": {
            "should": [
                { "match": { "title":         "Foxes"}},
                { "match": { "english_title": "Foxes"}}
            ]
        }
    }
}


which returns this explanation:

(title:foxes english_title:fox)


The match query uses the appropriate analyzer for each field to ensure
that it looks for each term in the correct format for that field.










Default Analyzers


While we can specify an analyzer at the field level, how do we determine which
analyzer is used for a field if none is specified at the field level?


Analyzers can be specified at several levels.  Elasticsearch works through
each level until it finds an analyzer that it can use.  At index time, the
order is as follows:



	
The analyzer defined in the field mapping, else



	
The analyzer defined in the _analyzer field of the document, else



	
The default analyzer for the type, which defaults to



	
The analyzer named default in the index settings, which defaults to



	
The analyzer named default at node level, which defaults to



	
The standard analyzer






At search time, the sequence is slightly different:



	
The analyzer defined in the query itself, else



	
The analyzer defined in the field mapping, else



	
The default analyzer for the type, which defaults to



	
The analyzer named default in the index settings, which defaults to



	
The analyzer named default at node level, which defaults to



	
The standard analyzer





Note

The two lines in italics in the preceding lists highlight differences in the index time sequence and the search time sequence.  The _analyzer field allows you to specify a default analyzer for each document (for example, english, french, spanish) while the analyzer parameter in the query specifies which analyzer to use on the query string. However, this is not the best way to handle multiple languages
in a single index because of the pitfalls highlighted in Part III.




Occasionally, it makes sense to use a different analyzer at index and search
time. For instance, at index time we may want to index synonyms (for example, for every
occurrence of quick, we also index fast, rapid, and speedy). But at
search time, we don’t need to search for all of these synonyms.  Instead we
can just look up the single word that the user has entered, be it quick,
fast, rapid, or speedy.


To enable this distinction, Elasticsearch also supports the index_analyzer
and search_analyzer parameters, and analyzers named default_index and
default_search.


Taking these extra parameters into account, the full sequence at index time
really looks like this:



	
The index_analyzer defined in the field mapping, else



	
The analyzer defined in the field mapping, else



	
The analyzer defined in the _analyzer field of the document, else



	
The default index_analyzer for the type, which defaults to



	
The default analyzer for the type, which defaults to



	
The analyzer named default_index in the index settings, which defaults to



	
The analyzer named default in the index settings, which defaults to



	
The analyzer named default_index at node level, which defaults to



	
The analyzer named default at node level, which defaults to



	
The standard analyzer






And at search time:



	
The analyzer defined in the query itself, else



	
The search_analyzer defined in the field mapping, else



	
The analyzer defined in the field mapping, else



	
The default search_analyzer for the type, which defaults to



	
The default analyzer for the type, which defaults to



	
The analyzer named default_search in the index settings, which defaults to



	
The analyzer named default in the index settings, which defaults to



	
The analyzer named default_search at node level, which defaults to



	
The analyzer named default at node level, which defaults to



	
The standard analyzer





















Configuring Analyzers in Practice


The sheer number of places where you can specify an analyzer is quite
overwhelming.  In practice, though, it is pretty simple.












Use index settings, not config files


The first thing to remember is that, even though you may start out using
Elasticsearch for a single purpose or a single application such as logging,
chances are that you will find more use cases and end up running several
distinct applications on the same cluster.  Each index needs to be independent
and independently configurable. You don’t want to set defaults for one use
case, only to have to override them for another use case later.


This rules out configuring analyzers at the node level.  Additionally,
configuring analyzers at the node level requires changing the config file on every
node and restarting every node, which becomes a maintenance nightmare. It’s a
much better idea to keep Elasticsearch running and to manage settings only via
the API.

















Keep it simple


Most of the time, you will know what fields your documents will contain ahead
of time.  The simplest approach is to set the analyzer for each full-text
field when you create your index or add type mappings.  While this approach is
slightly more verbose, it enables you to easily see which analyzer is being applied
to each field.


Typically, most of your string fields will be exact-value not_analyzed
fields such as tags or enums, plus a handful of full-text fields that will
use some default analyzer like standard or english or some other language.
Then you may have one or two fields that need custom analysis: perhaps the
title field needs to be indexed in a way that supports find-as-you-type.


You can set the default analyzer in the index to the analyzer you want to
use for almost all full-text fields, and just configure the specialized
analyzer on the one or two fields that need it.  If, in your model, you need
a different default analyzer per type, then use the type level analyzer
setting instead.

Note

A common work flow for time based data like logging is to create a new index
per day on the fly by just indexing into it.  While this work flow prevents
you from creating your index up front, you can still use
index templates
to specify the settings and mappings that a new index should have.































Relevance Is Broken!


Before we move on to discussing more-complex queries in
Chapter 14, let’s make a quick detour to explain why we
created our test index with just one primary shard.


Every now and again a new user opens an issue claiming that sorting by
relevance is broken and offering a short reproduction: the user indexes a few
documents, runs a simple query, and finds apparently less-relevant results
appearing above more-relevant results.


To understand why this happens, let’s imagine that we create an index with two
primary shards and we index ten documents, six of which contain the word foo.
It may happen that shard 1 contains three of the foo documents and shard
2 contains the other three.  In other words, our documents are well distributed.


In “What Is Relevance?”, we described the default similarity algorithm used in
Elasticsearch, called term frequency / inverse document frequency or TF/IDF.
Term frequency counts the number of times a term appears within the field we are
querying in the current document.  The more times it appears, the more
relevant is this document. The inverse document frequency takes into account
how often a term appears as a percentage of all the documents in the index.
The more frequently the term appears, the less weight it has.


However, for performance reasons, Elasticsearch doesn’t calculate the IDF
across all documents in the index. Instead, each shard calculates a local IDF
for the documents contained in that shard.


Because our documents are well distributed, the IDF for both shards will be
the same.  Now imagine instead that five of the foo documents are on shard 1,
and the sixth document is on shard 2.  In this scenario, the term foo is
very common on one shard (and so of little importance), but rare on the other
shard (and so much more important). These differences in IDF can produce
incorrect results.


In practice, this is not a problem. The differences between local and  global
IDF diminish the more documents that you add to the index. With real-world
volumes of data, the local IDFs soon even out. The problem is not that
relevance is broken but that there is too little data.


For testing purposes, there are two ways we can work around this issue. The
first is to create an index with one primary shard, as we did in the section
introducing the match query. If you have only one shard, then
the local IDF is the global IDF.


The second workaround is to add ?search_type=dfs_query_then_fetch to your
search requests. The dfs stands for Distributed Frequency Search, and it
tells Elasticsearch to first retrieve the local IDF from each shard in order
to calculate the global IDF across the whole index.

Tip
Don’t use dfs_query_then_fetch in production.  It really isn’t
required. Just having enough data will ensure that your term frequencies are
well distributed. There is no reason to add this extra DFS step to every query
that you run.













Chapter 14. Multifield Search



Queries are seldom simple one-clause match queries.  We frequently need to
search for the same or different query strings in one or more fields, which
means that we need to be able to combine multiple query clauses and their
relevance scores in a way that makes sense.


Perhaps we’re looking for a book called War and Peace by an author called
Leo Tolstoy. Perhaps we’re searching the Elasticsearch documentation
for “minimum should match,” which might be in the title or the body of a
page. Or perhaps we’re searching for users with first name John and last
name Smith.


In this chapter, we present the available tools for constructing multiclause
searches and how to figure out which solution you should apply to your
particular use case.








Multiple Query Strings


The simplest multifield query to deal with is the one where we can map
search terms to specific fields. If we know that War and Peace is the
title, and Leo Tolstoy is the author, it is easy to write each of these
conditions as a match clause and to combine them with a bool
query:


GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title":  "War and Peace" }},
        { "match": { "author": "Leo Tolstoy"   }}
      ]
    }
  }
}


The bool query takes a more-matches-is-better approach, so the score from
each match clause will be added together to provide the final _score for
each document. Documents that match both clauses will score higher than
documents that match just one clause.


Of course, you’re not restricted to using just match clauses: the bool
query can wrap any other query type, including other bool queries.  We could
add a clause to specify that we prefer to see versions of the book that have
been translated by specific translators:


GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title":  "War and Peace" }},
        { "match": { "author": "Leo Tolstoy"   }},
        { "bool":  {
          "should": [
            { "match": { "translator": "Constance Garnett" }},
            { "match": { "translator": "Louise Maude"      }}
          ]
        }}
      ]
    }
  }
}


Why did we put the translator clauses inside a separate bool query?  All four
match queries are should clauses, so why didn’t we just put the translator
clauses at the same level as the title and author clauses?


The answer lies in how the score is calculated.  The bool query runs each
match query, adds their scores together, then multiplies by the number of
matching clauses, and divides by the total number of clauses. Each clause at
the same level has the same weight. In the preceding query, the bool query
containing the translator clauses counts for one-third of the total score. If we had
put the translator clauses at the same level as title and author, they
would have reduced the contribution of the title and author clauses to one-quarter each.










Prioritizing Clauses


It is likely that an even one-third split between clauses is not what we need for
the preceding query.  Probably we’re more interested in the title and author
clauses then we are in the translator clauses. We need to tune the query to
make the title and author clauses relatively more important.


The simplest weapon in our tuning arsenal is the boost parameter. To
increase the weight of the title and author fields, give them a boost
value higher than 1:


GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { [image: 1]
            "title":  {
              "query": "War and Peace",
              "boost": 2
        }}},
        { "match": { [image: 1]
            "author":  {
              "query": "Leo Tolstoy",
              "boost": 2
        }}},
        { "bool":  { [image: 2]
            "should": [
              { "match": { "translator": "Constance Garnett" }},
              { "match": { "translator": "Louise Maude"      }}
            ]
        }}
      ]
    }
  }
}


	[image: 1]

	The title and author clauses have a boost value of 2.


	[image: 2]

	The nested bool clause has the default boost of 1.





The “best” value for the boost parameter is most easily determined by
trial and error: set a boost value, run test queries, repeat. A reasonable
range for boost lies between 1 and 10, maybe 15. Boosts higher than
that have little more impact because scores are
normalized.
























Single Query String


The bool query is the mainstay of multiclause queries. It works well
for many cases, especially when you are able to map different query strings to
individual fields.


The problem is that, these days, users expect to be able to type all of their
search terms into a single field, and expect that the application will figure out how
to give them the right results.  It is ironic that the multifield search form
is known as Advanced Search—it may appear advanced to the user, but it is
much simpler to implement.


There is no simple one-size-fits-all approach to multiword, multifield
queries.  To get the best results, you have to know your data and know how
to use the appropriate tools.










Know Your Data


When your only user input is a single query string, you will encounter three scenarios frequently:


	Best fields

	
When searching for words that represent a concept, such as “brown fox,” the
words mean more together than they do individually. Fields like the title
and body, while related, can be considered to be in competition with each
other. Documents should have as many words as possible in the same field,
and the score should come from the best-matching field.



	Most fields

	

A common technique for fine-tuning relevance is to index the same data into
multiple fields, each with its own analysis chain.


The main field may contain words in their stemmed form, synonyms, and words
stripped of their diacritics, or accents. It is used to match as many
documents as possible.


The same text could then be indexed in other fields to provide more-precise
matching.  One field may contain the unstemmed version, another the original
word with accents, and a third might use shingles to provide information
about word proximity.


These other fields act as signals to increase the relevance score of each
matching document. The more fields that match, the better.






	Cross fields

	

For some entities, the identifying information is spread across multiple
fields, each of which contains just a part of the whole:



	
Person: first_name and last_name



	
Book: title, author, and description



	
Address:  street, city, country, and postcode






In this case, we want to find as many words as possible in any of the listed
fields. We need to search across multiple fields as if they were one big
field.









All of these are multiword, multifield queries, but each requires a
different strategy. We will examine each strategy in turn in the rest of this
chapter.
























Best Fields


Imagine that we have a website that allows users to search blog posts, such
as these two documents:


PUT /my_index/my_type/1
{
    "title": "Quick brown rabbits",
    "body":  "Brown rabbits are commonly seen."
}

PUT /my_index/my_type/2
{
    "title": "Keeping pets healthy",
    "body":  "My quick brown fox eats rabbits on a regular basis."
}


The user types in the words “Brown fox” and clicks Search.   We don’t
know ahead of time if the user’s search terms will be found in the title or
the body field of the post, but it is likely that the user is searching for
related words.  To our eyes, document 2 appears to be the better match, as it
contains both words that we are looking for.


Now we run the following bool query:


{
    "query": {
        "bool": {
            "should": [
                { "match": { "title": "Brown fox" }},
                { "match": { "body":  "Brown fox" }}
            ]
        }
    }
}


And we find that this query gives document 1 the higher score:


{
  "hits": [
     {
        "_id":      "1",
        "_score":   0.14809652,
        "_source": {
           "title": "Quick brown rabbits",
           "body":  "Brown rabbits are commonly seen."
        }
     },
     {
        "_id":      "2",
        "_score":   0.09256032,
        "_source": {
           "title": "Keeping pets healthy",
           "body":  "My quick brown fox eats rabbits on a regular basis."
        }
     }
  ]
}


To understand why, think about how the bool query calculates its score:


	
It runs both of the queries in the should clause.



	
It adds their scores together.



	
It multiplies the total by the number of matching clauses.



	
It divides the result by the total number of clauses (two).







Document 1 contains the word brown in both fields, so both match clauses
are successful and have a score.  Document 2 contains both brown and
fox in the body field but neither word in the title field. The high
score from the body query is added to the zero score from the title query,
and multiplied by one-half, resulting in a lower overall score than for document 1.


In this example, the title and body fields are competing with each other.
We want to find the single best-matching field.


What if, instead of combining the scores from each field, we used the score
from the best-matching field as the overall score for the query?  This would
give preference to a single field that contains both of the words we are
looking for, rather than the same word repeated in different fields.










dis_max Query


Instead of the bool query, we can use the  dis_max or Disjunction Max
Query.  Disjunction means or (while conjunction means and) so the
Disjunction Max Query simply means return documents that match any of these
queries, and return the score of the best matching query:


{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Brown fox" }},
                { "match": { "body":  "Brown fox" }}
            ]
        }
    }
}


This produces the results that we want:


{
  "hits": [
     {
        "_id":      "2",
        "_score":   0.21509302,
        "_source": {
           "title": "Keeping pets healthy",
           "body":  "My quick brown fox eats rabbits on a regular basis."
        }
     },
     {
        "_id":      "1",
        "_score":   0.12713557,
        "_source": {
           "title": "Quick brown rabbits",
           "body":  "Brown rabbits are commonly seen."
        }
     }
  ]
}
























Tuning Best Fields Queries


What would happen if the user had searched instead for “quick pets”?  Both
documents contain the word quick, but only document 2 contains the word
pets. Neither document contains both words in the same field.


A simple dis_max query like the following would choose the single best
matching field, and ignore the other:


{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Quick pets" }},
                { "match": { "body":  "Quick pets" }}
            ]
        }
    }
}


{
  "hits": [
     {
        "_id": "1",
        "_score": 0.12713557, [image: 1]
        "_source": {
           "title": "Quick brown rabbits",
           "body": "Brown rabbits are commonly seen."
        }
     },
     {
        "_id": "2",
        "_score": 0.12713557, [image: 1]
        "_source": {
           "title": "Keeping pets healthy",
           "body": "My quick brown fox eats rabbits on a regular basis."
        }
     }
   ]
}


	[image: 1]

	Note that the scores are exactly the same.





We would probably expect documents that match on both the title field and
the body field to rank higher than documents that match on just one field,
but this isn’t the case. Remember: the dis_max query simply uses the
_score from the single best-matching clause.










tie_breaker


It is possible, however, to also take the _score from the other matching
clauses into account, by specifying the tie_breaker parameter:


{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Quick pets" }},
                { "match": { "body":  "Quick pets" }}
            ],
            "tie_breaker": 0.3
        }
    }
}


This gives us the following results:


{
  "hits": [
     {
        "_id": "2",
        "_score": 0.14757764, [image: 1]
        "_source": {
           "title": "Keeping pets healthy",
           "body": "My quick brown fox eats rabbits on a regular basis."
        }
     },
     {
        "_id": "1",
        "_score": 0.124275915, [image: 1]
        "_source": {
           "title": "Quick brown rabbits",
           "body": "Brown rabbits are commonly seen."
        }
     }
   ]
}


	[image: 1]

	Document 2 now has a small lead over document 1.





The tie_breaker parameter makes the dis_max query behave more like a
halfway house between dis_max and bool. It changes the score calculation
as follows:


	
Take the _score of the best-matching clause.



	
Multiply the score of each of the other matching clauses by the tie_breaker.



	
Add them all together and normalize.







With the tie_breaker, all matching clauses count, but the best-matching
clause counts most.

Note

The tie_breaker can be a floating-point value between 0 and 1, where 0
uses just the best-matching clause and 1 counts all matching clauses
equally.  The exact value can be tuned based on your data and queries, but a
reasonable value should be close to zero, (for example, 0.1 - 0.4), in order not to
overwhelm the best-matching nature of dis_max.


























multi_match Query


The multi_match query provides  a convenient shorthand way of running
the same query against multiple fields.

Note

There are several types of multi_match query, three of which just
happen to coincide with the three scenarios that we listed in
“Know Your Data”:  best_fields, most_fields, and cross_fields.




By default, this query runs as type best_fields, which means that it generates a
match query for each field and wraps them in a dis_max query. This
dis_max query


{
  "dis_max": {
    "queries":  [
      {
        "match": {
          "title": {
            "query": "Quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
      {
        "match": {
          "body": {
            "query": "Quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
    ],
    "tie_breaker": 0.3
  }
}


could be rewritten more concisely with multi_match as follows:


{
    "multi_match": {
        "query":                "Quick brown fox",
        "type":                 "best_fields", [image: 1]
        "fields":               [ "title", "body" ],
        "tie_breaker":          0.3,
        "minimum_should_match": "30%" [image: 2]
    }
}


	[image: 1]

	The best_fields type is the default and can be left out.


	[image: 2]

	Parameters like minimum_should_match or operator are passed through to
the generated match queries.













Using Wildcards in Field Names


Field names can be specified with wildcards: any field that matches the
wildcard pattern will be included in the search. You could match on the
book_title, chapter_title, and section_title fields, with the following:


{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": "*_title"
    }
}

















Boosting Individual Fields


Individual fields can be boosted by using the caret (^) syntax: just add
^boost after the field name, where boost is a floating-point number:


{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": [ "*_title", "chapter_title^2" ] [image: 1]
    }
}


	[image: 1]

	The chapter_title field has a boost of 2, while the book_title and
section_title fields have a default boost of 1.



























Most Fields


Full-text search is a battle between recall—returning all the
documents that are relevant—and precision—not returning irrelevant
documents.  The goal is to present the user with the most relevant documents
on the first page of results.


To improve recall, we cast the net wide—we include not only
documents that match the user’s search terms exactly, but also
documents that we believe to be pertinent to the query.  If a user searches
for “quick brown fox,” a document that contains fast foxes may well be
a reasonable result to return.


If the only pertinent document that we have is the one containing fast
foxes, it will appear at the top of the results list.  But of course, if
we have 100 documents that contain the words quick brown fox, then the
fast foxes document may be considered less relevant, and we would want to
push it further down the list.  After including many potential matches, we
need to ensure that the best ones rise to the top.


A common technique for fine-tuning full-text relevance is to index the same
text in multiple ways, each of which provides a different relevance signal. The main field would contain terms in their broadest-matching form to match as
many documents as possible.  For instance, we could do the following:



	
Use a stemmer to index jumps, jumping, and jumped as their root
form: jump.  Then it doesn’t matter if the user searches for
jumped; we could still match documents containing jumping.



	
Include synonyms like jump, leap, and hop.



	
Remove diacritics, or accents: for example, ésta, está, and esta would
all be indexed without accents as esta.






However, if we have two documents, one of which contains jumped and the
other jumping, the user would probably expect the first document to rank
higher, as it contains exactly what was typed in.


We can achieve this by indexing the same text in other fields to provide more-precise matching.  One field may contain the unstemmed version, another the
original word with diacritics, and a third might use shingles to provide
information about word proximity. These other fields
act as signals that increase the relevance score of each matching document.
The more fields that match, the better.


A document is included in the results list if it matches the broad-matching
main field. If it also matches the signal fields, it gets extra
points and is pushed up the results list.


We discuss synonyms, word proximity, partial-matching and other potential
signals later in the book, but we will use the simple example of stemmed and
unstemmed fields to illustrate this technique.










Multifield Mapping


The first thing to do is to set up our field to be indexed twice: once in a
stemmed form and once in an unstemmed form.  To do this, we will use
multifields, which we introduced in “String Sorting and Multifields”:


DELETE /my_index

PUT /my_index
{
    "settings": { "number_of_shards": 1 }, [image: 1]
    "mappings": {
        "my_type": {
            "properties": {
                "title": { [image: 2]
                    "type":     "string",
                    "analyzer": "english",
                    "fields": {
                        "std":   { [image: 3]
                            "type":     "string",
                            "analyzer": "standard"
                        }
                    }
                }
            }
        }
    }
}


	[image: 1]

	See “Relevance Is Broken!”.


	[image: 2]

	The title field is stemmed by the english analyzer.


	[image: 3]

	The title.std field uses the standard analyzer and so is not stemmed.





Next we index some documents:


PUT /my_index/my_type/1
{ "title": "My rabbit jumps" }

PUT /my_index/my_type/2
{ "title": "Jumping jack rabbits" }


Here is a simple match query on the title field for jumping rabbits:


GET /my_index/_search
{
   "query": {
        "match": {
            "title": "jumping rabbits"
        }
    }
}


This becomes a query for the two stemmed terms jump and rabbit, thanks to the
english analyzer. The title field of both documents contains both of those
terms, so both documents receive the same score:


{
  "hits": [
     {
        "_id": "1",
        "_score": 0.42039964,
        "_source": {
           "title": "My rabbit jumps"
        }
     },
     {
        "_id": "2",
        "_score": 0.42039964,
        "_source": {
           "title": "Jumping jack rabbits"
        }
     }
  ]
}


If we were to query just the title.std field, then only document 2 would
match.  However, if we were to query both fields and to combine their scores
by using the bool query, then both documents would match (thanks to the title
field) and document 2 would score higher (thanks to the title.std field):


GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":  "jumping rabbits",
            "type":   "most_fields", [image: 1]
            "fields": [ "title", "title.std" ]
        }
    }
}


	[image: 1]

	We want to combine the scores from all matching fields, so we use the
most_fields type.  This causes the multi_match query to wrap the two
field-clauses in a bool query instead of a dis_max query.





{
  "hits": [
     {
        "_id": "2",
        "_score": 0.8226396, [image: 1]
        "_source": {
           "title": "Jumping jack rabbits"
        }
     },
     {
        "_id": "1",
        "_score": 0.10741998, [image: 1]
        "_source": {
           "title": "My rabbit jumps"
        }
     }
  ]
}


	[image: 1]

	Document 2 now scores much higher than document 1.





We are using the broad-matching title field to include as many documents as
possible—to increase recall—but we use the title.std field as a
signal to push the most relevant results to the top.


The contribution of each field to the final score can be controlled by
specifying custom boost values. For instance, we could boost the title
field to make it the most important field, thus reducing the effect of any
other signal fields:


GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":       "jumping rabbits",
            "type":        "most_fields",
            "fields":      [ "title^10", "title.std" ] [image: 1]
        }
    }
}


	[image: 1]

	The boost value of 10 on the title field makes that field relatively
much more important than the title.std field.



























Cross-fields Entity Search


Now we come to a common pattern: cross-fields entity search.  With entities
like person, product, or address, the identifying information is spread
across several fields.  We may have a person indexed as follows:


{
    "firstname":  "Peter",
    "lastname":   "Smith"
}


Or an address like this:


{
    "street":   "5 Poland Street",
    "city":     "London",
    "country":  "United Kingdom",
    "postcode": "W1V 3DG"
}


This sounds a lot like the example we described in “Multiple Query Strings”,
but there is a big difference between these two scenarios.  In
“Multiple Query Strings”, we used a separate query string for each field. In
this scenario, we want to search across multiple fields with a single query
string.


Our user might search for the person “Peter Smith” or for the address
“Poland Street W1V.” Each of those words appears in a different field, so
using a dis_max / best_fields query to find the single best-matching
field is clearly the wrong approach.










A Naive Approach


Really, we want to query each field in turn and add up the scores of every
field that matches, which sounds like a job for the bool query:


{
  "query": {
    "bool": {
      "should": [
        { "match": { "street":    "Poland Street W1V" }},
        { "match": { "city":      "Poland Street W1V" }},
        { "match": { "country":   "Poland Street W1V" }},
        { "match": { "postcode":  "Poland Street W1V" }}
      ]
    }
  }
}


Repeating the query string for every field soon becomes tedious. We can use
the multi_match query instead, and set the type to most_fields to tell it to
combine the scores of all matching fields:


{
  "query": {
    "multi_match": {
      "query":       "Poland Street W1V",
      "type":        "most_fields",
      "fields":      [ "street", "city", "country", "postcode" ]
    }
  }
}

















Problems with the most_fields Approach


The most_fields approach to entity search has some problems that are not
immediately obvious:



	
It is designed to find the most fields matching any words, rather than to
find the most matching words across all fields.



	
It can’t use the operator or minimum_should_match parameters
to reduce the long tail of less-relevant results.



	
Term frequencies are different in each field and could interfere with each
other to produce badly ordered results.




























Field-Centric Queries


All three of the preceding problems stem from  most_fields being
field-centric rather than term-centric: it looks for the  most matching
fields, when really what we’re interested is the most matching terms.

Note
The best_fields type is also field-centric and suffers from similar problems.



First we’ll look at why these problems exist, and then how we can combat them.










Problem 1: Matching the Same Word in Multiple Fields


Think about how the most_fields query is executed: Elasticsearch generates a
separate match query for each field and then wraps these match queries in an outer bool query.


We can see this by passing our query through the validate-query API:


GET /_validate/query?explain
{
  "query": {
    "multi_match": {
      "query":   "Poland Street W1V",
      "type":    "most_fields",
      "fields":  [ "street", "city", "country", "postcode" ]
    }
  }
}


which yields this explanation:

(street:poland   street:street   street:w1v)
(city:poland     city:street     city:w1v)
(country:poland  country:street  country:w1v)
(postcode:poland postcode:street postcode:w1v)


You can see that a document matching just the word poland in two fields
could score higher than a document matching poland and street in one
field.

















Problem 2: Trimming the Long Tail


In “Controlling Precision”, we talked about using the and operator or the
minimum_should_match parameter to trim the long tail of almost irrelevant
results. Perhaps we could try this:


{
    "query": {
        "multi_match": {
            "query":       "Poland Street W1V",
            "type":        "most_fields",
            "operator":    "and", [image: 1]
            "fields":      [ "street", "city", "country", "postcode" ]
        }
    }
}


	[image: 1]

	All terms must be present.





However, with best_fields or most_fields, these parameters are passed down
to the generated match queries. The explanation for this query shows the
following:

(+street:poland   +street:street   +street:w1v)
(+city:poland     +city:street     +city:w1v)
(+country:poland  +country:street  +country:w1v)
(+postcode:poland +postcode:street +postcode:w1v)


In other words, using the and operator means that all words must exist in
the same field, which is clearly wrong! It is unlikely that any documents
would match this query.

















Problem 3: Term Frequencies


In “What Is Relevance?”, we explained that the default similarity algorithm
used to calculate the relevance score for each term is TF/IDF:


	Term frequency

	
The more often a term appears in a field in a single document, the more
relevant the document.



	Inverse document frequency

	
The more often a term appears in a field in all documents in the index,
the less relevant is that term.






When searching against multiple fields, TF/IDF can introduce some surprising
results.


Consider our example of searching for “Peter Smith” using the first_name
and last_name fields.  Peter is a common first name and Smith is a common
last name—both will have low IDFs.  But what if we have another person in
the index whose name is Smith Williams?  Smith as a first name is very
uncommon and so will have a high IDF!


A simple query like the following may well return Smith Williams above
Peter Smith in spite of the fact that the second person is a better match
than the first.


{
    "query": {
        "multi_match": {
            "query":       "Peter Smith",
            "type":        "most_fields",
            "fields":      [ "*_name" ]
        }
    }
}


The high IDF of smith in the first name field can overwhelm the two low IDFs
of peter as a first name and smith as a last name.

















Solution


These problems only exist because we are dealing with multiple fields. If we
were to combine all of these fields into a single field, the problems would
vanish. We could achieve this by adding a full_name field to our person
document:


{
    "first_name":  "Peter",
    "last_name":   "Smith",
    "full_name":   "Peter Smith"
}


When querying just the full_name field:



	
Documents with more matching words would trump documents with the same word
repeated.



	
The minimum_should_match and operator parameters would function as
expected.



	
The inverse document frequencies for first and last names would be combined
so it wouldn’t matter whether Smith were a first or last name anymore.






While this would work, we don’t like having to store redundant data.  Instead,
Elasticsearch offers us two solutions—one at index time and one at search
time—which we discuss next.
























Custom _all Fields


In “Metadata: _all Field”, we explained that the special _all field indexes the values
from all other fields as one big string. Having all fields indexed into one
field is not terribly flexible, though.  It would be nice to have one custom
_all field for the person’s name, and another custom _all field for the
address.


Elasticsearch provides us with this functionality via the copy_to parameter
in a field mapping:


PUT /my_index
{
    "mappings": {
        "person": {
            "properties": {
                "first_name": {
                    "type":     "string",
                    "copy_to":  "full_name" [image: 1]
                },
                "last_name": {
                    "type":     "string",
                    "copy_to":  "full_name" [image: 1]
                },
                "full_name": {
                    "type":     "string"
                }
            }
        }
    }
}


	[image: 1]

	The values in the first_name and last_name fields
are also copied to the full_name field.





With this mapping in place, we can query the first_name field for first
names, the last_name field for last name, or the full_name field for first
and last names.

Note
Mappings of the first_name and last_name fields have no bearing
on how the full_name field is indexed. The full_name field copies the
string values from the other two fields, then indexes them according to the
mapping of the full_name field only.


















cross-fields Queries


The custom _all approach is a good solution, as long as you thought
about setting it up before you indexed your documents. However, Elasticsearch
also provides a search-time solution to the problem: the multi_match query
with type cross_fields.
The cross_fields type takes a term-centric approach, quite different from the
field-centric approach taken by best_fields and most_fields. It treats all
of the fields as one big field, and looks for each term in any field.


To illustrate the difference between field-centric and term-centric queries,
look at the explanation for this field-centric most_fields query:


GET /_validate/query?explain
{
    "query": {
        "multi_match": {
            "query":       "peter smith",
            "type":        "most_fields",
            "operator":    "and", [image: 1]
            "fields":      [ "first_name", "last_name" ]
        }
    }
}


	[image: 1]

	All terms are required.





For a document to match, both peter and smith must appear in the same
field, either the first_name field or the last_name field:

(+first_name:peter +first_name:smith)
(+last_name:peter  +last_name:smith)


A term-centric approach would use this logic instead:

+(first_name:peter last_name:peter)
+(first_name:smith last_name:smith)


In other words, the term peter must appear in either field, and the term
smith must appear in either field.


The cross_fields type first analyzes the query string to produce a list of
terms, and then it searches for each term in any field. That difference alone
solves two of the three problems that we listed in “Field-Centric Queries”, leaving
us just with the issue of differing inverse document frequencies.


Fortunately, the cross_fields type solves this too, as can be seen from this
validate-query request:


GET /_validate/query?explain
{
    "query": {
        "multi_match": {
            "query":       "peter smith",
            "type":        "cross_fields", [image: 1]
            "operator":    "and",
            "fields":      [ "first_name", "last_name" ]
        }
    }
}


	[image: 1]

	Use cross_fields term-centric matching.





It solves the term-frequency problem by blending inverse document
frequencies across fields: 

+blended("peter", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])


In other words, it looks up the IDF of smith in both the first_name and
the last_name fields and uses the minimum of the two as the IDF for both
fields.  The fact that smith is a common last name means that it will be
treated as a common first name too.

Note

For the cross_fields query type to work optimally, all fields should have
the same analyzer.  Fields that share an analyzer are grouped together as
blended fields.


If you include fields with a different analysis chain, they will be  added to
the query in the same way as for best_fields.  For instance, if we added the
title field to the preceding query (assuming it uses a different analyzer), the
explanation would be as follows:

(+title:peter +title:smith)
(
  +blended("peter", fields: [first_name, last_name])
  +blended("smith", fields: [first_name, last_name])
)


This is particularly important when using the minimum_should_match and
operator parameters.












Per-Field Boosting


One of the advantages of using the cross_fields query over
custom _all fields is that you can boost individual
fields at query time.


For fields of equal value like first_name and last_name, this generally
isn’t required, but if you were searching for books using the title and
description fields, you might want to give more weight to the title field.
This can be done as described before with the caret (^) syntax:


GET /books/_search
{
    "query": {
        "multi_match": {
            "query":       "peter smith",
            "type":        "cross_fields",
            "fields":      [ "title^2", "description" ] [image: 1]
        }
    }
}


	[image: 1]

	The title field has a boost of 2, while the description field
has the default boost of 1.





The advantage of being able to boost individual fields should be weighed
against the cost of querying multiple fields instead of querying a single
custom _all field. Use whichever of the two solutions that delivers the most
bang for your buck.
























Exact-Value Fields


The final topic that we should touch on before leaving multifield queries is
that of exact-value not_analyzed fields.  It is not useful to mix
not_analyzed fields with analyzed fields in multi_match queries.


The reason for this can be demonstrated easily by looking at a query
explanation.  Imagine that we have set the title field to be not_analyzed:


GET /_validate/query?explain
{
    "query": {
        "multi_match": {
            "query":       "peter smith",
            "type":        "cross_fields",
            "fields":      [ "title", "first_name", "last_name" ]
        }
    }
}


Because the title field is not analyzed, it searches that field for a single
term consisting of the whole query string!

title:peter smith
(
    blended("peter", fields: [first_name, last_name])
    blended("smith", fields: [first_name, last_name])
)


That term clearly does not exist in the inverted index of the title field,
and can never be found. Avoid using not_analyzed fields in multi_match
queries.












Chapter 15. Proximity Matching



Standard full-text search with TF/IDF treats documents, or at least each field
within a document, as a big bag of words.  The match query can tell us whether
that bag contains our search terms, but that is only part of the story.
It can’t tell us anything about the relationship between words.


Consider the difference between these sentences:



	
Sue ate the alligator.



	
The alligator ate Sue.



	
Sue never goes anywhere without her alligator-skin purse.






A match query for sue alligator would match all three documents, but it
doesn’t tell us whether the two words form part of the same idea, or even the same
paragraph.


Understanding how words relate to each other is a complicated problem, and
we can’t solve it by just using another type of query,
but we can at least find words that appear to be related because they appear
near each other or even right next to each other.


Each document may be much longer than the examples we have presented: Sue
and alligator may be separated by paragraphs of other text. Perhaps we still
want to return these documents in which the words are widely separated, but we
want to give documents in which the words are close together a higher relevance
score.


This is the province of phrase matching, or proximity matching.

Tip

In this chapter, we are using the same example documents that we used for
the match query.










Phrase Matching


In the same way that the match query is the go-to query for standard
full-text search, the match_phrase query is the one you should reach for
when you want to find words that are near each other:


GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": "quick brown fox"
        }
    }
}


Like the match query, the match_phrase query first analyzes the query
string to produce a list of terms. It then searches for all the terms, but
keeps only documents that contain all of the search terms, in the same
positions relative to each other.  A query for the phrase quick fox
would not match any of our documents, because no document contains the word
quick immediately followed by fox.

Tip

The match_phrase query can also be written as a match query with type
phrase:


"match": {
    "title": {
        "query": "quick brown fox",
        "type":  "phrase"
    }
}












Term Positions


When a string is analyzed, the analyzer returns not only a list of terms, but
also the position, or order, of each term in the original string:


GET /_analyze?analyzer=standard
Quick brown fox


This returns the following:


{
   "tokens": [
      {
         "token": "quick",
         "start_offset": 0,
         "end_offset": 5,
         "type": "<ALPHANUM>",
         "position": 1 [image: 1]
      },
      {
         "token": "brown",
         "start_offset": 6,
         "end_offset": 11,
         "type": "<ALPHANUM>",
         "position": 2 [image: 1]
      },
      {
         "token": "fox",
         "start_offset": 12,
         "end_offset": 15,
         "type": "<ALPHANUM>",
         "position": 3 [image: 1]
      }
   ]
}


	[image: 1]

	The position of each term in the original string.





Positions can be stored in the inverted index, and position-aware queries like
the match_phrase query can use them to match only documents that contain
all the words in exactly the order specified, with no words in-between.

















What Is a Phrase


For a document to be considered a match for the phrase “quick brown fox,” the following must be true:



	
quick, brown, and fox must all appear in the field.



	
The position of brown must be 1 greater than the position of quick.



	
The position of fox must be 2 greater than the position of quick.






If any of these conditions is not met, the document is not considered a match.

Tip

Internally, the match_phrase query uses the low-level span query family to
do position-aware matching. Span queries are term-level queries, so they have
no analysis phase; they search for the exact term specified.


Thankfully, most people never need to use the span queries directly, as the
match_phrase query is usually good enough. However, certain specialized
fields, like patent searches, use these low-level queries to perform very
specific, carefully constructed positional searches.


























Mixing It Up


Requiring exact-phrase matches may be too strict a constraint. Perhaps we do
want documents that contain “quick brown fox” to be considered a match for
the query “quick fox,” even though the positions aren’t exactly equivalent.


We can introduce a degree of flexibility into phrase matching by using the
slop parameter:


GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": {
            	"query": "quick fox",
            	"slop":  1
            }
        }
    }
}


The slop parameter tells the match_phrase query how far apart terms are
allowed to be while still considering the document a match. By how far
apart we mean how many times do you need to move a term in order to make
the query and document match?


We’ll start with a simple example. To make the query quick fox match
a document containing quick brown fox we need a slop of just 1:

            Pos 1         Pos 2         Pos 3
-----------------------------------------------
Doc:        quick         brown         fox
-----------------------------------------------
Query:      quick         fox
Slop 1:     quick                 ↳     fox


Although all words need to be present in phrase matching, even when using slop,
the words don’t necessarily need to be in the same sequence in order to
match. With a high enough slop value, words can be arranged in any order.


To make the query fox quick match our document, we need a slop of 3:

            Pos 1         Pos 2         Pos 3
-----------------------------------------------
Doc:        quick         brown         fox
-----------------------------------------------
Query:      fox           quick
Slop 1:     fox|quick  ↵  [image: 1]
Slop 2:     quick      ↳  fox
Slop 3:     quick                 ↳     fox


	[image: 1]

	Note that fox and quick occupy the same position in this step.
Switching word order from fox quick to quick fox thus requires two
steps, or a slop of 2.




















Multivalue Fields


A curious thing can happen when you try to use phrase matching on multivalue
fields.  Imagine that you index this document:


PUT /my_index/groups/1
{
    "names": [ "John Abraham", "Lincoln Smith"]
}


Then run a phrase query for Abraham Lincoln:


GET /my_index/groups/_search
{
    "query": {
        "match_phrase": {
            "names": "Abraham Lincoln"
        }
    }
}


Surprisingly, our document matches, even though Abraham and Lincoln
belong to two different people in the names array. The reason for this comes
down to the way arrays are indexed in Elasticsearch.


When John Abraham is analyzed, it produces this:



	
Position 1: john



	
Position 2: abraham






Then when Lincoln Smith is analyzed, it produces this:



	
Position 3: lincoln



	
Position 4: smith






In other words, Elasticsearch produces exactly the same list of tokens as it would have
for the single string John Abraham Lincoln Smith. Our example query
looks for abraham directly followed by lincoln, and these two terms do
indeed exist, and they are right next to each other, so the query matches.


Fortunately, there is a simple workaround for cases like these, called the
position_offset_gap, which we need to configure in the field mapping:


DELETE /my_index/groups/ [image: 1]

PUT /my_index/_mapping/groups [image: 2]
{
    "properties": {
        "names": {
            "type":                "string",
            "position_offset_gap": 100
        }
    }
}


	[image: 1]

	First delete the groups mapping and all documents of that type.


	[image: 2]

	Then create a new groups mapping with the correct values.





The position_offset_gap setting tells Elasticsearch that it should increase
the current term position by the specified value for every new array
element.  So now, when we index the array of names, the terms are emitted with
the following positions:



	
Position 1: john



	
Position 2: abraham



	
Position 103: lincoln



	
Position 104: smith






Our phrase query would no longer match a document like this because abraham
and lincoln are now 100 positions apart. You would have to add a slop
value of 100 in order for this document to match.

















Closer Is Better


Whereas a phrase query simply excludes documents that don’t contain the exact
query phrase, a proximity query—a phrase query where slop is greater
than 0—incorporates the proximity of the query terms into the final
relevance _score. By setting a high slop value like 50 or 100, you can
exclude documents in which the words are really too far apart, but give a higher
score to documents in which the words are closer together.


The following proximity query for quick dog matches both documents that
contain the words quick and dog, but gives a higher score to the
document in which the words are nearer to each other:


POST /my_index/my_type/_search
{
   "query": {
      "match_phrase": {
         "title": {
            "query": "quick dog",
            "slop":  50 [image: 1]
         }
      }
   }
}


	[image: 1]

	Note the high slop value.





{
  "hits": [
     {
        "_id":      "3",
        "_score":   0.75, [image: 1]
        "_source": {
           "title": "The quick brown fox jumps over the quick dog"
        }
     },
     {
        "_id":      "2",
        "_score":   0.28347334, [image: 2]
        "_source": {
           "title": "The quick brown fox jumps over the lazy dog"
        }
     }
  ]
}


	[image: 1]

	Higher score because quick and dog are close together


	[image: 2]

	Lower score because quick and dog are further apart




















Proximity for Relevance


Although proximity queries are useful, the fact that they require all terms to be
present can make them overly strict. It’s the same issue that we discussed in
“Controlling Precision” in Chapter 13: if six out of seven terms match,
a document is probably relevant enough to be worth showing to the user, but
the match_phrase query would exclude it.


Instead of using proximity matching as an absolute requirement, we can
use it as a signal—as one of potentially many queries, each of which
contributes to the overall score for each document (see “Most Fields”).


The fact that we want to add together the scores from multiple queries implies
that we should combine them by using the bool query.


We can use a simple match query as a must clause. This is the query that
will determine which documents are included in our result set.  We can trim
the long tail with the minimum_should_match parameter.  Then we can add other,
more specific queries as should clauses. Every one that matches will
increase the relevance of the matching docs.


GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "must": {
        "match": { [image: 1]
          "title": {
            "query":                "quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
      "should": {
        "match_phrase": { [image: 2]
          "title": {
            "query": "quick brown fox",
            "slop":  50
          }
        }
      }
    }
  }
}


	[image: 1]

	The must clause includes or excludes documents from the result set.


	[image: 2]

	The should clause increases the relevance score of those documents that
match.





We could, of course, include other queries in the should clause, where each
query targets a specific aspect of relevance.

















Improving Performance


Phrase and proximity queries are more expensive than simple match queries.
Whereas a match query just has to look up terms in the inverted index, a
match_phrase query has to calculate and compare the positions of multiple
possibly repeated terms.


The Lucene nightly
benchmarks show that a simple term query is about 10 times as fast as a
phrase query, and about 20 times as fast as a proximity query (a phrase query
with slop). And of course, this cost is paid at search time instead of at index time.

Tip

Usually the extra cost of phrase queries is not as scary as these numbers
suggest. Really, the difference in performance is a testimony to just how fast
a simple term query is.  Phrase queries on typical full-text data usually
complete within a few milliseconds, and are perfectly usable in practice, even
on a busy cluster.


In certain pathological cases, phrase queries can be costly, but this is
unusual.  An example of a pathological case is DNA sequencing, where there are
many many identical terms repeated in many positions. Using higher slop
values in this case results in a huge growth in the number of position
calculations.




So what can we do to limit the performance cost of phrase and proximity
queries? One useful approach is to reduce the total number of documents that
need to be examined by the phrase query.










Rescoring Results


In the preceding section, we discussed using proximity
queries just for relevance purposes, not to include or exclude results from
the result set.  A query may match millions of results, but chances are that
our users are interested in only the first few pages of results.


A simple match query will already have ranked documents that contain all
search terms near the top of the list. Really, we just want to rerank the top
results to give an extra relevance bump to those documents that also match the
phrase query.


The search API supports exactly this functionality via rescoring. The
rescore phase allows you to apply a more expensive scoring algorithm—like a
phrase query—to just the top K results from each shard. These top
results are then resorted according to their new scores.


The request looks like this:


GET /my_index/my_type/_search
{
    "query": {
        "match": {  [image: 1]
            "title": {
                "query":                "quick brown fox",
                "minimum_should_match": "30%"
            }
        }
    },
    "rescore": {
        "window_size": 50, [image: 2]
        "query": {         [image: 3]
            "rescore_query": {
                "match_phrase": {
                    "title": {
                        "query": "quick brown fox",
                        "slop":  50
                    }
                }
            }
        }
    }
}


	[image: 1]

	The match query decides which results will be included in the final
result set and ranks results according to TF/IDF.


	[image: 2]

	The window_size is the number of top results to rescore, per shard.


	[image: 3]

	The only rescoring algorithm currently supported is another query, but
there are plans to add more algorithms later.



























Finding Associated Words


As useful as phrase and proximity queries can be, they still have a downside.
They are overly strict: all terms must be present for a phrase query to match,
even when using slop.


The flexibility in word ordering that you gain with slop also comes at a
price, because you lose the association between word pairs.  While you can
identify documents in which sue, alligator, and ate occur close together,
you can’t tell whether Sue ate or the alligator ate.


When words are used in conjunction with each other, they express an idea that
is bigger or more meaningful than each word in isolation. The two clauses
I’m not happy I’m working and I’m happy I’m not working contain the sames words, in
close proximity, but have quite different meanings.


If, instead of indexing each word independently, we were to index pairs of
words, then we could retain more of the context in which the words were used.


For the sentence Sue ate the alligator, we would not only index each word
(or unigram) as a term

["sue", "ate", "the", "alligator"]


but also each word and its neighbor as single terms:

["sue ate", "ate the", "the alligator"]


These word pairs (or bigrams) are known as shingles.

Tip

Shingles are not restricted to being pairs of words; you could index word
triplets (trigrams) as well:

["sue ate the", "ate the alligator"]


Trigrams give you a higher degree of precision, but greatly increase the
number of unique terms in the index. Bigrams are sufficient for most use
cases.




Of course, shingles are useful only if the user enters the query in the same
order as in the original document; a query for sue alligator would match
the individual words but none of our shingles.


Fortunately, users tend to express themselves using constructs similar to
those that appear in the data they are searching. But this point is an
important one: it is not enough to index just bigrams; we still need unigrams,
but we can use matching bigrams as a signal to increase the relevance score.










Producing Shingles


Shingles need to be created at index time as part of the analysis process. We
could index both unigrams and bigrams into a single field, but it is cleaner
to keep unigrams and bigrams in separate fields that can be queried
independently.  The unigram field would form the basis of our search, with the
bigram field being used to boost relevance.


First, we need to create an analyzer that uses the shingle token filter:


DELETE /my_index

PUT /my_index
{
    "settings": {
        "number_of_shards": 1,  [image: 1]
        "analysis": {
            "filter": {
                "my_shingle_filter": {
                    "type":             "shingle",
                    "min_shingle_size": 2, [image: 2]
                    "max_shingle_size": 2, [image: 2]
                    "output_unigrams":  false   [image: 3]
                }
            },
            "analyzer": {
                "my_shingle_analyzer": {
                    "type":             "custom",
                    "tokenizer":        "standard",
                    "filter": [
                        "lowercase",
                        "my_shingle_filter" [image: 4]
                    ]
                }
            }
        }
    }
}


	[image: 1]

	See “Relevance Is Broken!”.


	[image: 2]

	The default min/max shingle size is 2 so we don’t really need to set
these.


	[image: 3]

	The shingle token filter outputs unigrams by default, but we want to
keep unigrams and bigrams separate.


	[image: 4]

	The my_shingle_analyzer uses our custom my_shingles_filter token
filter.





First, let’s test that our analyzer is working as expected with the analyze
API:


GET /my_index/_analyze?analyzer=my_shingle_analyzer
Sue ate the alligator


Sure enough, we get back three terms:



	
sue ate



	
ate the



	
the alligator






Now we can proceed to setting up a field to use the new analyzer.

















Multifields


We said that it is cleaner to index unigrams and bigrams separately, so we
will create the title field as a multifield (see “String Sorting and Multifields”):


PUT /my_index/_mapping/my_type
{
    "my_type": {
        "properties": {
            "title": {
                "type": "string",
                "fields": {
                    "shingles": {
                        "type":     "string",
                        "analyzer": "my_shingle_analyzer"
                    }
                }
            }
        }
    }
}


With this mapping, values from  our JSON document in the field title will be
indexed both as unigrams (title) and as bigrams (title.shingles), meaning
that we can query these fields independently.


And finally, we can index our example documents:


POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "title": "Sue ate the alligator" }
{ "index": { "_id": 2 }}
{ "title": "The alligator ate Sue" }
{ "index": { "_id": 3 }}
{ "title": "Sue never goes anywhere without her alligator skin purse" }

















Searching for Shingles


To understand the benefit that the shingles field adds, let’s first look at
the results from a simple match query for “The hungry alligator ate Sue”:


GET /my_index/my_type/_search
{
   "query": {
        "match": {
           "title": "the hungry alligator ate sue"
        }
   }
}


This query returns all three documents, but note that documents 1 and 2
have the same relevance score because they contain the same words:


{
  "hits": [
     {
        "_id": "1",
        "_score": 0.44273707, [image: 1]
        "_source": {
           "title": "Sue ate the alligator"
        }
     },
     {
        "_id": "2",
        "_score": 0.44273707, [image: 1]
        "_source": {
           "title": "The alligator ate Sue"
        }
     },
     {
        "_id": "3", [image: 2]
        "_score": 0.046571054,
        "_source": {
           "title": "Sue never goes anywhere without her alligator skin purse"
        }
     }
  ]
}


	[image: 1]

	Both documents contain the, alligator, and ate and so have the
same score.


	[image: 2]

	We could have excluded document 3 by setting the minimum_should_match
parameter. See “Controlling Precision”.





Now let’s add the shingles field into the query.  Remember that we want
matches on the shingles field to act as a signal—to increase the
relevance score—so we still need to include the query on the main title
field:


GET /my_index/my_type/_search
{
   "query": {
      "bool": {
         "must": {
            "match": {
               "title": "the hungry alligator ate sue"
            }
         },
         "should": {
            "match": {
               "title.shingles": "the hungry alligator ate sue"
            }
         }
      }
   }
}


We still match all three documents, but document 2 has now been bumped into
first place because it matched the shingled term ate sue.


{
  "hits": [
     {
        "_id": "2",
        "_score": 0.4883322,
        "_source": {
           "title": "The alligator ate Sue"
        }
     },
     {
        "_id": "1",
        "_score": 0.13422975,
        "_source": {
           "title": "Sue ate the alligator"
        }
     },
     {
        "_id": "3",
        "_score": 0.014119488,
        "_source": {
           "title": "Sue never goes anywhere without her alligator skin purse"
        }
     }
  ]
}


Even though our query included the word hungry, which doesn’t appear in
any of our documents, we still managed to use word proximity to return the
most relevant document first.

















Performance


Not only are shingles more flexible than phrase queries, but they perform better
as well.  Instead of paying the price of a phrase query every time you search,
queries for shingles are just as efficient as a simple match query. A small price is paid at index time, because more terms need to
be indexed, which also means that fields with shingles use more disk space.
However, most applications write once and read many times, so it makes sense
to optimize for fast queries.


This is a theme that you will encounter frequently in Elasticsearch: enables you to achieve a lot at search time, without requiring any up-front
setup. Once you understand your requirements more clearly, you can achieve better results with better performance by modeling your data correctly at index time.




















Chapter 16. Partial Matching



A keen observer will notice  that all the queries so far in this book have
operated on whole terms.  To match something, the smallest unit had to be a
single term. You can find only terms that exist in the inverted index.


But what happens if you want to match parts of a term but not the whole thing?
Partial matching allows users to specify a portion of the term they are
looking for and find any words that contain that fragment.


The requirement to match on part of a term is less common in the full-text
search-engine world than you might think.  If you have come from an SQL
background, you likely have, at some stage of your career,
implemented a poor man’s full-text search using SQL constructs like this:


    WHERE text LIKE "*quick*"
      AND text LIKE "*brown*"
      AND text LIKE "*fox*" [image: 1]


	[image: 1]

	*fox* would match “fox” and “foxes.”





Of course, with Elasticsearch, we have the analysis process and the inverted
index that remove the need for such brute-force techniques. To handle the
case of matching both “fox” and “foxes,” we could simply use a stemmer to
index words in their root form.  There is no need to match partial terms.


That said, on some occasions partial matching can be useful.
Common use cases include the following:



	
Matching postal codes, product serial numbers, or other not_analyzed values
that start with a particular prefix or match a wildcard pattern
or even a regular expression



	
search-as-you-type—displaying the most likely results before the
user has finished typing the search terms



	
Matching in languages like German or Dutch, which contain long compound
words, like Weltgesundheitsorganisation (World Health Organization)






We will start by examining prefix matching on exact-value not_analyzed
fields.








Postcodes and Structured Data


We will use United Kingdom postcodes (postal codes in the United States) to illustrate how to use partial matching with
structured data. UK postcodes have a well-defined structure. For instance, the
postcode W1V 3DG can be broken down as follows:



	
W1V: This outer part identifies the postal area and district:



	
W indicates the area (one or two letters)



	
1V indicates the district (one or two numbers, possibly followed by a letter







	
3DG: This inner part identifies a street or building:



	
3 indicates the sector (one number)



	
DG indicates the unit (two letters)










Let’s assume that we are indexing postcodes as exact-value not_analyzed
fields, so we could create our index as follows:


PUT /my_index
{
    "mappings": {
        "address": {
            "properties": {
                "postcode": {
                    "type":  "string",
                    "index": "not_analyzed"
                }
            }
        }
    }
}


And index some postcodes:


PUT /my_index/address/1
{ "postcode": "W1V 3DG" }

PUT /my_index/address/2
{ "postcode": "W2F 8HW" }

PUT /my_index/address/3
{ "postcode": "W1F 7HW" }

PUT /my_index/address/4
{ "postcode": "WC1N 1LZ" }

PUT /my_index/address/5
{ "postcode": "SW5 0BE" }


Now our data is ready to be queried.

















prefix Query


To find all postcodes beginning with W1, we could use a simple prefix
query:


GET /my_index/address/_search
{
    "query": {
        "prefix": {
            "postcode": "W1"
        }
    }
}


The prefix query is a low-level query that works at the term level.  It
doesn’t analyze the query string before searching. It assumes that you have
passed it the exact prefix that you want to find.

Tip

By default, the prefix query does no relevance scoring.  It just finds
matching documents and gives them all a score of 1.  Really, it behaves more
like a filter than a query.  The only practical difference between the
prefix query and the prefix filter is that the filter can be cached.




Previously, we said that “you can find only terms that exist in the inverted
index,” but we haven’t done anything special to index these postcodes; each
postcode is simply indexed as the exact value specified in each document.  So
how does the prefix query work?


Remember that the inverted index consists of a sorted list of unique terms (in
this case, postcodes).  For each term, it lists the IDs of the documents
containing that term in the postings list.  The inverted index for our
example documents looks something like this:

Term:          Doc IDs:
-------------------------
"SW5 0BE"    |  5
"W1F 7HW"    |  3
"W1V 3DG"    |  1
"W2F 8HW"    |  2
"WC1N 1LZ"   |  4
-------------------------


To support prefix matching on the fly, the query does the following:


	
Skips through the terms list to find the first term beginning with W1.



	
Collects the associated document IDs.



	
Moves to the next term.



	
If that term also begins with W1, the query repeats from step 2; otherwise, we’re finished.







While this works fine for our small example, imagine that our inverted index
contains a million postcodes beginning with W1. The prefix query
would need to visit all one million terms in order to calculate the result!


And the shorter the prefix, the more terms need to be visited. If we were to
look for the prefix W instead of W1, perhaps we would match 10 million
terms instead of just one million.

Caution
The prefix query or filter are useful for ad hoc prefix matching, but
should be used with care.  They can be used freely on fields with a small
number of terms, but they scale poorly and can put your cluster under a lot of
strain.  Try to limit their impact on your cluster by using a long prefix;
this reduces the number of terms that need to be visited.



Later in this chapter, we present an alternative index-time solution that
makes prefix matching much more efficient.  But first, we’ll take a look at
two related queries: the wildcard and regexp queries.

















wildcard and regexp Queries


The wildcard query is a low-level, term-based query similar in nature to the
prefix query, but it allows you to specify a pattern instead of just a prefix.
It uses the standard shell wildcards: ? matches any character, and *
matches zero or more characters.


This query would match the documents containing W1F 7HW and W2F 8HW:


GET /my_index/address/_search
{
    "query": {
        "wildcard": {
            "postcode": "W?F*HW" [image: 1]
        }
    }
}


	[image: 1]

	The ? matches the 1 and the 2, while the * matches the space
and the 7 and 8.





Imagine now that you want to match all postcodes just in the W area.  A
prefix match would also include postcodes starting with WC, and you would
have a similar problem with a wildcard match.  We want to match only postcodes
that begin with a W, followed by a number.  The regexp query allows you to
write these more complicated patterns:


GET /my_index/address/_search
{
    "query": {
        "regexp": {
            "postcode": "W[0-9].+" [image: 1]
        }
    }
}


	[image: 1]

	The regular expression says that the term must begin with a W, followed
by any number from 0 to 9, followed by one or more other characters.





The wildcard and regexp queries work in exactly the same way as the
prefix query.  They also have to scan the list of terms in the inverted
index to find all matching terms, and gather document IDs term by term.  The
only difference between them and the prefix query is that they support more-complex patterns.


This means that the same caveats apply.  Running these queries on a field with
many unique terms can be resource intensive indeed.  Avoid using a
pattern that starts with a wildcard (for example, *foo or, as a regexp, .*foo).


Whereas prefix matching can be made more efficient by preparing your data at
index time, wildcard and regular expression matching can be done only
at query time. These queries have their place but should be used sparingly.

Caution

The prefix, wildcard, and regexp queries operate on terms. If you use
them to query an analyzed field, they will examine each term in the
field, not the field as a whole.


For instance, let’s say that our title field contains “Quick brown fox”
which produces the terms quick, brown, and fox.


This query would match:


{ "regexp": { "title": "br.*" }}


But neither of these queries would match:


{ "regexp": { "title": "Qu.*" }} [image: 1]
{ "regexp": { "title": "quick br*" }} [image: 2]


	[image: 1]

	The term in the index is quick, not Quick.


	[image: 2]

	quick and brown are separate terms.






















Query-Time Search-as-You-Type


Leaving postcodes behind, let’s take a look at how prefix matching can help
with full-text queries.  Users have become accustomed to seeing search results
before they have finished typing their query—so-called instant search, or
search-as-you-type.  Not only do users receive their search results in less
time, but we can guide them toward results that actually exist in our index.


For instance, if a user types in johnnie walker bl, we would like to show results for Johnnie Walker Black Label and Johnnie Walker Blue
Label before they can finish typing their query.


As always, there are more ways than one to skin a cat! We will start by
looking at the way that is simplest to implement.  You don’t need to prepare your
data in any way; you can implement search-as-you-type at query time on any
full-text field.


In “Phrase Matching”, we introduced the match_phrase query, which matches
all the specified words in the same positions relative to each other.  For-query time search-as-you-type, we can use a specialization of this query,
called the match_phrase_prefix query:


{
    "match_phrase_prefix" : {
        "brand" : "johnnie walker bl"
    }
}


This query behaves in the same way as the match_phrase query, except that it
treats the last word in the query string as a prefix.  In other words, the
preceding example would look for the following:



	
johnnie



	
Followed by walker



	
Followed by words beginning with bl






If you were to run this query through the validate-query API, it would
produce this explanation:

"johnnie walker bl*"


Like the match_phrase query, it accepts a slop parameter (see “Mixing It Up”) to
make the word order and relative positions somewhat less rigid:


{
    "match_phrase_prefix" : {
        "brand" : {
            "query": "walker johnnie bl", [image: 1]
            "slop":  10
        }
    }
}


	[image: 1]

	Even though the words are in the wrong order, the query still matches
because we have set a high enough slop value to allow some flexibility
in word positions.





However, it is always only the last word in the query string that is treated
as a prefix.


Earlier, in “prefix Query”, we warned about the perils of the prefix—how
prefix queries can be resource intensive.  The same is true in this
case.  A prefix of a could match hundreds of thousands of terms. Not only
would matching on this many terms be resource intensive, but it would also not be
useful to the user.


We can limit the impact of the prefix expansion by setting max_expansions to
a reasonable number, such as 50:


{
    "match_phrase_prefix" : {
        "brand" : {
            "query":          "johnnie walker bl",
            "max_expansions": 50
        }
    }
}


The max_expansions parameter controls how many terms the prefix is allowed
to match.  It will find the first term starting with bl and keep collecting
terms (in alphabetical order) until it either runs out of terms with prefix
bl, or it has more terms than max_expansions.


Don’t forget that we have to run this query every time the user types another
character, so it needs to be fast.  If the first set of results isn’t what users are after, they’ll keep typing until they get the results that they want.

















Index-Time Optimizations


All of the solutions we’ve talked about so far are implemented at
query time. They don’t require any special mappings or indexing patterns;
they simply work with the data that you’ve already indexed.


The flexibility of query-time operations comes at a cost: search performance.
Sometimes it may make sense to move the cost away from the query.  In a real-
time web application, an additional 100ms may be too much latency to tolerate.


By preparing your data at index time, you can make your searches more flexible
and improve performance. You still pay a price: increased index size and
slightly slower indexing throughput, but it is a price you pay once at index
time, instead of paying it on every query.


Your users will thank you.

















Ngrams for Partial Matching


As we have said before, “You can find only terms that exist in the inverted
index.” Although the prefix, wildcard, and regexp queries demonstrated that
that is not strictly true, it is true that doing a single-term lookup is
much faster than iterating through the terms list to find matching terms on
the fly. Preparing your data for partial matching ahead of time will increase
your search performance.


Preparing your data at index time means choosing the right analysis chain, and
the tool that we use for partial matching is the n-gram. An n-gram can be
best thought of as a moving window on a word. The n stands for a length.
If we were to n-gram the word quick, the results would depend on the length
we have chosen:



	
Length 1 (unigram):    [ q, u, i, c, k ]



	
Length 2 (bigram):     [ qu, ui, ic, ck ]



	
Length 3 (trigram):    [ qui, uic, ick ]



	
Length 4 (four-gram):  [ quic, uick ]



	
Length 5 (five-gram):  [ quick ]






Plain n-grams are useful for matching somewhere within a word, a technique
that we will use in “Ngrams for Compound Words”. However, for search-as-you-type,
we use a specialized form of n-grams called edge n-grams.  Edge
n-grams are anchored to the beginning of the word. Edge n-gramming the word
quick would result in this:



	
q



	
qu



	
qui



	
quic



	
quick






You may notice that this conforms exactly to the letters that a user searching for “quick” would type. In other words, these are the
perfect terms to use for instant search!

















Index-Time Search-as-You-Type


The first step to setting up index-time search-as-you-type is to define our
analysis chain, which we discussed  in “Configuring Analyzers”, but we will
go over the steps again here.










Preparing the Index


The first step is to configure a custom edge_ngram token filter, which we
will call the autocomplete_filter:


{
    "filter": {
        "autocomplete_filter": {
            "type":     "edge_ngram",
            "min_gram": 1,
            "max_gram": 20
        }
    }
}


This configuration says that, for any term that this token filter receives,
it should produce an n-gram anchored to the start of the word of minimum
length 1 and maximum length 20.


Then we need to use this token filter in a custom analyzer, which we will call
the autocomplete analyzer:


{
    "analyzer": {
        "autocomplete": {
            "type":      "custom",
            "tokenizer": "standard",
            "filter": [
                "lowercase",
                "autocomplete_filter" [image: 1]
            ]
        }
    }
}


	[image: 1]

	Our custom edge-ngram token filter





This analyzer will tokenize a string into individual terms by using the
standard tokenizer, lowercase each term, and then produce edge n-grams of each
term, thanks to our autocomplete_filter.


The full request to create the index and instantiate the token filter and
analyzer looks like this:


PUT /my_index
{
    "settings": {
        "number_of_shards": 1, [image: 1]
        "analysis": {
            "filter": {
                "autocomplete_filter": { [image: 2]
                    "type":     "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 20
                }
            },
            "analyzer": {
                "autocomplete": {
                    "type":      "custom",
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase",
                        "autocomplete_filter" [image: 3]
                    ]
                }
            }
        }
    }
}


	[image: 1]

	See “Relevance Is Broken!”.


	[image: 2]

	First we define our custom token filter.


	[image: 3]

	Then we use it in an analyzer.





You can test this new analyzer to make sure it is behaving correctly by using
the analyze API:


GET /my_index/_analyze?analyzer=autocomplete
quick brown


The results show us that the analyzer is working correctly. It returns these
terms:



	
q



	
qu



	
qui



	
quic



	
quick



	
b



	
br



	
bro



	
brow



	
brown






To use the analyzer, we need to apply it to a field, which we can do
with the update-mapping API:


PUT /my_index/_mapping/my_type
{
    "my_type": {
        "properties": {
            "name": {
                "type":     "string",
                "analyzer": "autocomplete"
            }
        }
    }
}


Now, we can index some test documents:


POST /my_index/my_type/_bulk
{ "index": { "_id": 1            }}
{ "name": "Brown foxes"    }
{ "index": { "_id": 2            }}
{ "name": "Yellow furballs" }

















Querying the Field


If you test out a query for “brown fo” by using a simple match query


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "name": "brown fo"
        }
    }
}


you will see that both documents match, even though the Yellow furballs
doc contains neither brown nor fo:


{

  "hits": [
     {
        "_id": "1",
        "_score": 1.5753809,
        "_source": {
           "name": "Brown foxes"
        }
     },
     {
        "_id": "2",
        "_score": 0.012520773,
        "_source": {
           "name": "Yellow furballs"
        }
     }
  ]
}


As always, the validate-query API shines some light:


GET /my_index/my_type/_validate/query?explain
{
    "query": {
        "match": {
            "name": "brown fo"
        }
    }
}


The explanation shows us that the query is looking for edge n-grams of every
word in the query string:

name:b name:br name:bro name:brow name:brown name:f name:fo


The name:f condition is satisfied by the second document because
furballs has been indexed as f, fu, fur, and so forth.  In retrospect, this
is not surprising.  The same autocomplete analyzer is being applied both at
index time and at search time, which in most situations is the right thing to
do. This is one of the few occasions when it makes sense to break this rule.


We want to ensure that our inverted index contains edge n-grams of every word,
but we want to match only the full words that the user has entered (brown and fo).  We can do this by using the autocomplete analyzer at
index time and the standard analyzer at search time.  One way to change the
search analyzer is just to specify it in the query:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "name": {
                "query":    "brown fo",
                "analyzer": "standard" [image: 1]
            }
        }
    }
}


	[image: 1]

	This overrides the analyzer setting on the name field.





Alternatively, we can specify the index_analyzer and search_analyzer in
the mapping for the name field itself. Because we want to change only the
search_analyzer, we can update the existing mapping without having to
reindex our data:


PUT /my_index/my_type/_mapping
{
    "my_type": {
        "properties": {
            "name": {
                "type":            "string",
                "index_analyzer":  "autocomplete", [image: 1]
                "search_analyzer": "standard" [image: 2]
            }
        }
    }
}


	[image: 1]

	Use the autocomplete analyzer at index time to produce edge n-grams of
every term.


	[image: 2]

	Use the standard analyzer at search time to search only on the terms
that the user has entered.





If we were to repeat the validate-query request, it would now give us this
explanation:

name:brown name:fo


Repeating our query correctly returns just the Brown foxes
document.


Because most of the work has been done at index time, all this query needs to
do is to look up the two terms brown and fo, which is much more efficient
than the match_phrase_prefix approach of having to find all terms beginning
with fo.


Completion Suggester

Using edge n-grams for search-as-you-type is easy to set up, flexible, and
fast.  However, sometimes it is not fast enough.  Latency matters, especially
when you are trying to provide instant feedback.  Sometimes the fastest way of
searching is not to search at all.


The completion suggester in
Elasticsearch takes a completely different approach.  You feed it a list
of all possible completions, and it builds them into a finite state
transducer, an optimized data structure that resembles a big graph.  To
search for suggestions, Elasticsearch starts at the beginning of the graph and
moves character by character along the matching path. Once it has run out of
user input, it looks at all possible endings of the  current path to produce a
list of suggestions.


This data structure lives in memory and makes prefix lookups extremely fast,
much faster than any term-based query could be.  It is an excellent match for
autocompletion of names and brands, whose words are usually organized in a
common order: “Johnny Rotten” rather than “Rotten Johnny.”


When word order is less predictable, edge n-grams can be a better solution
than the completion suggester.  This particular cat may be skinned in myriad
ways.



















Edge n-grams and Postcodes


The edge n-gram approach can also be used for structured data, such as the
postcodes example from earlier in this chapter.  Of course,
the postcode field would need to be analyzed instead of not_analyzed, but
you could use the keyword tokenizer to treat the postcodes as if they were
not_analyzed.

Tip

The keyword tokenizer is the no-operation tokenizer, the tokenizer that does
nothing.  Whatever string it receives as input, it emits exactly the same
string as a single token.  It can therefore be used for values that we would
normally treat as not_analyzed but that require some other analysis
transformation such as lowercasing.




This example uses the keyword tokenizer to convert the postcode string into a token stream, so that we can use the edge n-gram token filter:


{
    "analysis": {
        "filter": {
            "postcode_filter": {
                "type":     "edge_ngram",
                "min_gram": 1,
                "max_gram": 8
            }
        },
        "analyzer": {
            "postcode_index": { [image: 1]
                "tokenizer": "keyword",
                "filter":    [ "postcode_filter" ]
            },
            "postcode_search": { [image: 2]
                "tokenizer": "keyword"
            }
        }
    }
}


	[image: 1]

	The postcode_index analyzer would use the postcode_filter
to turn postcodes into edge n-grams.


	[image: 2]

	The postcode_search analyzer would treat search terms as
if they were not_indexed.



























Ngrams for Compound Words


Finally, let’s take a look at how n-grams can be used to search languages with
compound words.  German is famous for combining several small words into one
massive compound word in order to capture precise or complex meanings. For
example:


	Aussprachewörterbuch

	
Pronunciation dictionary



	Militärgeschichte

	
Military history



	Weißkopfseeadler

	
White-headed sea eagle, or bald eagle



	Weltgesundheitsorganisation

	
World Health Organization



	Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz

	
The law concerning the delegation of duties for the supervision of cattle
marking and the labeling of beef






Somebody searching for “Wörterbuch” (dictionary) would probably expect to
see “Aussprachewörtebuch” in the results list. Similarly, a search for
“Adler” (eagle) should include “Weißkopfseeadler.”


One approach to indexing languages like this is to break compound words into
their constituent parts using the compound word token filter.
However, the quality of the results depends on how good your compound-word
dictionary is.


Another approach is just to break all words into n-grams and to search for any
matching fragments—the more fragments that match, the more relevant the
document.


Given that an n-gram is a moving window on a word, an n-gram of any length
will cover all of the word.  We want to choose a length that is long enough
to be meaningful, but not so long that we produce far too many unique terms.
A trigram (length 3) is probably a good starting point:


PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "trigrams_filter": {
                    "type":     "ngram",
                    "min_gram": 3,
                    "max_gram": 3
                }
            },
            "analyzer": {
                "trigrams": {
                    "type":      "custom",
                    "tokenizer": "standard",
                    "filter":   [
                        "lowercase",
                        "trigrams_filter"
                    ]
                }
            }
        }
    },
    "mappings": {
        "my_type": {
            "properties": {
                "text": {
                    "type":     "string",
                    "analyzer": "trigrams" [image: 1]
                }
            }
        }
    }
}


	[image: 1]

	The text field uses the trigrams analyzer to index its contents as
n-grams of length 3.





Testing the trigrams analyzer with the analyze API


GET /my_index/_analyze?analyzer=trigrams
Weißkopfseeadler


returns these terms:

wei, eiß, ißk, ßko, kop, opf, pfs, fse, see, eea,ead, adl, dle, ler


We can index our example compound words to test this approach:


POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Aussprachewörterbuch" }
{ "index": { "_id": 2 }}
{ "text": "Militärgeschichte" }
{ "index": { "_id": 3 }}
{ "text": "Weißkopfseeadler" }
{ "index": { "_id": 4 }}
{ "text": "Weltgesundheitsorganisation" }
{ "index": { "_id": 5 }}
{ "text": "Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz" }


A search for “Adler” (eagle) becomes a query for the three terms adl, dle,
and ler:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "text": "Adler"
        }
    }
}


which correctly matches “Weißkopfsee-adler”:


{
  "hits": [
     {
        "_id": "3",
        "_score": 3.3191128,
        "_source": {
           "text": "Weißkopfseeadler"
        }
     }
  ]
}


A similar query for “Gesundheit” (health) correctly matches
“Welt-gesundheit-sorganisation,” but it also matches
“Militär-ges-chichte” and
“Rindfleischetikettierungsüberwachungsaufgabenübertragungs-ges-etz,”
both of which also contain the trigram ges.


Judicious use of the minimum_should_match parameter can remove these
spurious results by requiring that a minimum number of trigrams must be
present for a document to be considered a match:


GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "text": {
                "query":                "Gesundheit",
                "minimum_should_match": "80%"
            }
        }
    }
}


This is a bit of a shotgun approach to full-text search and can result in a
large inverted index, but it is an effective generic way of indexing languages
that use many compound words or that don’t use whitespace between words,
such as Thai.


This technique is used to increase recall—the number of relevant
documents that a search returns.  It is usually used in combination with
other techniques, such as shingles (see “Finding Associated Words”) to improve precision and
the relevance score of each document.












Part III. Dealing with Human Language



    I know all those words, but that sentence makes no sense to me.

    Matt Groening




Full-text search is a battle between precision—returning as few
irrelevant documents as possible—and recall—returning as many relevant
documents as possible. While matching only the exact words that the user has
queried would be precise, it is not enough. We would miss out on many
documents that the user would consider to be relevant. Instead, we need to
spread the net wider, to also search for words that are not exactly the same
as the original but are related.


Wouldn’t you expect a search for “quick brown fox” to match a document
containing “fast brown foxes,” “Johnny Walker” to match “Johnnie
Walker,” or “Arnolt Schwarzenneger” to match “Arnold Schwarzenegger”?


If documents exist that do contain exactly what the user has queried,
those documents should appear at the top of the result set, but weaker matches
can be included further down the list.  If no documents match
exactly, at least we can show the user potential matches; they may even
be what the user originally intended!


There are several lines of attack:



	
Remove diacritics like ´, ^, and ¨ so that a search for rôle will
also match role, and vice versa. See Chapter 20.



	
Remove the distinction between singular and plural—fox versus foxes—or between tenses—jumping versus jumped versus jumps—by stemming each word to its root form. See Chapter 21.



	
Remove commonly used words or stopwords like the, and, and or
to improve search performance.  See Chapter 22.



	
Including synonyms so that a query for quick could also match fast,
or UK could match United Kingdom. See Chapter 23.



	
Check for misspellings or alternate spellings, or match on homophones—words that sound the same, like their versus there, meat versus
meet  versus mete. See Chapter 24.






Before we can manipulate individual words, we need to divide text into
words, which means that we need to know what constitutes a word. We will
tackle this in Chapter 19.


But first, let’s take a look at how to get started quickly and easily.














































































































Chapter 19. Identifying Words



A word in English is relatively simple to spot: words are separated by
whitespace or (some) punctuation. Even in English, though, there can be
controversy: is you’re one word or two? What about o’clock,
cooperate, half-baked, or eyewitness?


Languages like German or Dutch combine individual words to create longer
compound words like Weißkopfseeadler (white-headed sea eagle), but in order
to be able to return Weißkopfseeadler as a result for the query Adler
(eagle), we need to understand how to break up compound words into their
constituent parts.


Asian languages are even more complex: some have no whitespace between words,
sentences, or even paragraphs. Some words can be represented by a single
character, but the same single character, when placed next to other
characters, can form just one part of a longer word with a quite different
meaning.


It should be obvious that there is no silver-bullet analyzer that will
miraculously deal with all human languages. Elasticsearch ships with dedicated
analyzers for many languages, and more language-specific analyzers are
available as plug-ins.


However, not all languages have dedicated analyzers, and sometimes you won’t
even be sure which language(s) you are dealing with.  For these situations, we
need good standard tools that do a reasonable job regardless of language.








standard Analyzer


The standard analyzer is used by default for any full-text analyzed string
field.  If we were to reimplement the  standard analyzer as a
custom analyzer, it would be defined as follows:


{
    "type":      "custom",
    "tokenizer": "standard",
    "filter":  [ "lowercase", "stop" ]
}


In Chapter 20 and Chapter 22, we talk about the
lowercase, and stop token filters, but for the moment, let’s focus on
the standard tokenizer.

















standard Tokenizer


A tokenizer accepts a string as input, processes the string to break it
into individual words, or tokens (perhaps discarding some characters like
punctuation), and emits a token stream as output.


What is interesting is the algorithm that is used to identify words. The
whitespace tokenizer simply breaks on whitespace—spaces, tabs, line
feeds, and so forth—and assumes that contiguous nonwhitespace characters form a
single token. For instance:


GET /_analyze?tokenizer=whitespace
You're the 1st runner home!


This request would return the following terms:
You're, the, 1st, runner, home!


The letter tokenizer, on the other hand, breaks on any character that is
not a letter, and so would return the following terms: You, re, the,
st, runner, home.


The standard tokenizer uses the Unicode Text Segmentation algorithm (as
defined in Unicode Standard Annex #29) to
find the boundaries between words, and emits everything in-between. Its
knowledge of Unicode allows it to successfully tokenize text containing a
mixture of languages.


Punctuation may or may not be considered part of a word, depending on
where it appears:


GET /_analyze?tokenizer=standard
You're my 'favorite'.


In this example, the apostrophe in You're is treated as part of the
word, while the single quotes in 'favorite' are not, resulting in the
following terms: You're, my, favorite.

Tip

The uax_url_email tokenizer works in exactly the same way as the standard
tokenizer, except that it recognizes email addresses and URLs and emits them as
single tokens. The standard tokenizer, on the other hand, would try to
break them into individual words. For instance, the email address
joe-bloggs@foo-bar.com would result in the tokens joe, bloggs, foo,
bar.com.




The standard tokenizer is a reasonable starting point for tokenizing most
languages, especially Western languages.  In fact, it forms the basis of most
of the language-specific analyzers like the english, french, and spanish
analyzers. Its support for Asian languages, however, is limited, and you should consider
using the icu_tokenizer instead, which is available in the ICU plug-in.

















Installing the ICU Plug-in


The ICU analysis
plug-in  for Elasticsearch uses the International Components for Unicode
(ICU) libraries  (see site.project.org) to
provide a rich set of tools for dealing with Unicode. These include the
icu_tokenizer, which is particularly useful for Asian languages, and a number
of token filters that are essential for correct matching and sorting in all
languages other than English.

Note

The ICU plug-in is an essential tool for dealing with languages other than
English, and it is highly recommended that you install and use it.
Unfortunately, because it is based on the external ICU libraries, different
versions of the ICU plug-in may not be compatible with previous versions.  When
upgrading, you may need to reindex your data.




To install the plug-in, first shut down your Elasticsearch node  and then run the
following command from the Elasticsearch home directory:


./bin/plugin -install elasticsearch/elasticsearch-analysis-icu/$VERSION [image: 1]


	[image: 1]

	The current $VERSION can be found at
https://github.com/elasticsearch/elasticsearch-analysis-icu.





Once installed, restart Elasticsearch, and you should see a line similar to the
following in the startup logs:

[INFO][plugins] [Mysterio] loaded [marvel, analysis-icu], sites [marvel]


If you are running a cluster with multiple nodes, you will need to install the
plug-in on every node in the cluster.

















icu_tokenizer


The icu_tokenizer uses the same Unicode Text Segmentation algorithm as the
standard tokenizer, but adds better support for some Asian languages by
using a dictionary-based approach to identify words in Thai, Lao, Chinese,
Japanese, and Korean, and using custom rules to break Myanmar and Khmer text
into syllables.


For instance, compare the tokens produced by the standard and
icu_tokenizers, respectively, when tokenizing “Hello. I am from Bangkok.” in
Thai:


GET /_analyze?tokenizer=standard
สวัสดี ผมมาจากกรุงเทพฯ


The standard tokenizer produces two tokens, one for each sentence: สวัสดี,
ผมมาจากกรุงเทพฯ.  That is useful only if you want to search for the whole
sentence “I am from Bangkok.”, but not if you want to search for just
“Bangkok.”


GET /_analyze?tokenizer=icu_tokenizer
สวัสดี ผมมาจากกรุงเทพฯ


The icu_tokenizer, on the other hand, is able to break up the text into the
individual words (สวัสดี, ผม, มา, จาก, กรุงเทพฯ), making them
easier to search.


In contrast, the standard tokenizer “over-tokenizes” Chinese and Japanese
text, often breaking up whole words into single characters. Because there
are no spaces between words, it can be difficult to tell whether consecutive
characters are separate words or form a single word.  For instance:



	
向 means facing, 日 means sun, and 葵 means hollyhock. When
written together, 向日葵 means sunflower.



	
五 means five or fifth, 月 means month, and 雨 means rain.
The first two characters written together as 五月 mean the month
of May, and adding the third character, 五月雨 means
continuous rain. When combined with a fourth character, 式,
meaning style, the word 五月雨式 becomes an adjective for anything
consecutive or unrelenting.






Although each character may be a word in its own right, tokens are more
meaningful when they retain the bigger original concept instead of just the
component parts:


GET /_analyze?tokenizer=standard
向日葵

GET /_analyze?tokenizer=icu_tokenizer
向日葵


The standard tokenizer in the preceding example would emit each character
as a separate token: 向, 日, 葵. The icu_tokenizer would
emit the single token 向日葵 (sunflower).


Another difference between the standard tokenizer and the icu_tokenizer is
that the latter will break a word containing characters written in different
scripts (for example, βeta) into separate tokens—β, eta—while the
former will emit the word as a single token: βeta.

















Tidying Up Input Text


Tokenizers produce the best results when the input text is clean, valid
text, where valid means that it follows the punctuation rules that the
Unicode algorithm expects.  Quite often, though, the text we need to process
is anything but clean. Cleaning it up before tokenization improves the quality
of the output.










Tokenizing HTML


Passing HTML through the standard tokenizer or the icu_tokenizer produces
poor results.  These tokenizers just don’t know what to do with the HTML tags.
For example:


GET /_analyzer?tokenizer=standard
<p>Some d&eacute;j&agrave; vu <a href="http://somedomain.com>">website</a>


The standard tokenizer confuses HTML tags and entities, and emits the
following tokens: p, Some, d, eacute, j, agrave, vu, a,
href, http, somedomain.com, website, a.  Clearly not what was
intended!


Character filters can be added to an analyzer to preprocess the text
before it is passed to the tokenizer.  In this case, we can use the
html_strip character filter to remove HTML tags and to decode HTML entities
such as &eacute; into the corresponding Unicode characters.


Character filters can be tested out via the analyze API by specifying them
in the query string:


GET /_analyzer?tokenizer=standard&char_filters=html_strip
<p>Some d&eacute;j&agrave; vu <a href="http://somedomain.com>">website</a>


To use them as part of the analyzer, they should be added to a custom
analyzer definition:


PUT /my_index
{
    "settings": {
        "analysis": {
            "analyzer": {
                "my_html_analyzer": {
                    "tokenizer":     "standard",
                    "char_filter": [ "html_strip" ]
                }
            }
        }
    }
}


Once created, our new my_html_analyzer can be tested with the analyze API:


GET /my_index/_analyzer?analyzer=my_html_analyzer
<p>Some d&eacute;j&agrave; vu <a href="http://somedomain.com>">website</a>


This emits the tokens that we expect: Some, déjà, vu, website.

















Tidying Up Punctuation


The standard tokenizer and icu_tokenizer both understand that an
apostrophe within a word should be treated as part of the word, while single
quotes that surround a word should not. Tokenizing the text You're my 'favorite'. would correctly emit the tokens You're, my, favorite.


Unfortunately, Unicode lists a few characters that are sometimes used
as apostrophes:


	U+0027

	
Apostrophe (')—the original ASCII character



	U+2018

	
Left single-quotation mark (‘)—opening quote when single-quoting



	U+2019

	
Right single-quotation mark (’)—closing quote when single-quoting, but also the  preferred character to use as an apostrophe






Both tokenizers treat these three characters as an apostrophe (and thus as
part of the word) when they appear within a word. Then there are another three
apostrophe-like characters:


	U+201B

	
Single high-reversed-9 quotation mark (‛)—same as U+2018 but differs in appearance



	U+0091

	
Left single-quotation mark in ISO-8859-1—should not be used in Unicode



	U+0092

	
Right single-quotation mark in ISO-8859-1—should not be used in Unicode






Both tokenizers treat these three characters as word boundaries—a place to
break text into tokens. Unfortunately, some publishers use U+201B as a
stylized way to write names like M‛coy, and the second two characters may well
be produced by your word processor, depending on its age.


Even when using the “acceptable” quotation marks, a word written with a
single right quotation mark—You’re—is not the same as the word written
with an apostrophe—You're—which means that a query for one variant
will not find the other.


Fortunately, it is possible to sort out this mess with the mapping character
filter, which allows us to replace all instances of one character with
another.  In this case, we will replace all apostrophe variants with the
simple U+0027 apostrophe:


PUT /my_index
{
  "settings": {
    "analysis": {
      "char_filter": { [image: 1]
        "quotes": {
          "type": "mapping",
          "mappings": [ [image: 2]
            "\\u0091=>\\u0027",
            "\\u0092=>\\u0027",
            "\\u2018=>\\u0027",
            "\\u2019=>\\u0027",
            "\\u201B=>\\u0027"
          ]
        }
      },
      "analyzer": {
        "quotes_analyzer": {
          "tokenizer":     "standard",
          "char_filter": [ "quotes" ] [image: 3]
        }
      }
    }
  }
}


	[image: 1]

	We define a custom char_filter called quotes that
maps all apostrophe variants to a simple apostrophe.


	[image: 2]

	For clarity, we have used the JSON Unicode escape syntax
for each character, but we could just have used the
characters themselves: "‘=>'".


	[image: 3]

	We use our custom quotes character filter to create
a new analyzer called quotes_analyzer.





As always, we test the analyzer after creating it:


GET /my_index/_analyze?analyzer=quotes_analyzer
You’re my ‘favorite’ M‛Coy


This example returns the following tokens, with all of the in-word
quotation marks replaced by apostrophes: You're, my, favorite, M'Coy.


The more effort that you put into ensuring that the tokenizer receives good-quality input, the better your search results will be.



















Chapter 20. Normalizing Tokens



Breaking text into tokens is only half the job. To make those
tokens more easily searchable, they need to go through a normalization
process to remove insignificant differences between otherwise identical words,
such as uppercase versus lowercase.  Perhaps we also need to remove significant
differences, to make esta, ésta, and está all searchable as the same
word.  Would you search for déjà vu, or just for deja vu?


This is the job of the token filters, which receive a stream of tokens from
the tokenizer.  You can have multiple token filters, each doing its particular
job.  Each receives the new token stream as output by the token filter before
it.








In That Case


The most frequently used token filter is the lowercase filter, which does
exactly what you would expect; it transforms each token into its lowercase
form:


GET /_analyze?tokenizer=standard&filters=lowercase
The QUICK Brown FOX! [image: 1]


	[image: 1]

	Emits tokens the, quick, brown, fox





It doesn’t matter whether users search for fox or FOX, as long as the same
analysis process is applied at query time and at search time. The lowercase
filter will transform a query for FOX into a query for fox, which is the
same  token that we have stored in our inverted index.


To use token filters as part of the analysis process, we can create a custom
analyzer:


PUT /my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_lowercaser": {
          "tokenizer": "standard",
          "filter":  [ "lowercase" ]
        }
      }
    }
  }
}


And we can test it out with the analyze API:


GET /my_index/_analyze?analyzer=my_lowercaser
The QUICK Brown FOX! [image: 1]


	[image: 1]

	Emits tokens the, quick, brown, fox




















You Have an Accent


English uses diacritics (like ´, ^, and ¨) only for imported words—like rôle, déjà, and däis—but usually they are optional.  Other
languages require diacritics in order to be correct.  Of course, just because
words are spelled correctly in your index doesn’t mean that the user will
search for the correct spelling.


It is often useful to strip diacritics from words, allowing rôle to match
role, and vice versa. With Western languages, this can be done with the
asciifolding character filter.  Actually, it does more than just strip
diacritics.  It tries to convert many Unicode characters into a simpler ASCII
representation:



	
ß ⇒ ss



	
æ ⇒ ae



	
ł ⇒ l



	
ɰ ⇒ m



	
⁇ ⇒ ??



	
❷ ⇒ 2



	
⁶ ⇒ 6






Like the lowercase filter, the asciifolding filter doesn’t require any
configuration but can be included directly in a custom analyzer:


PUT /my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "folding": {
          "tokenizer": "standard",
          "filter":  [ "lowercase", "asciifolding" ]
        }
      }
    }
  }
}

GET /my_index?analyzer=folding
My œsophagus caused a débâcle [image: 1]


	[image: 1]

	Emits my, oesophagus, caused, a, debacle













Retaining Meaning


Of course, when you strip diacritical marks from a word, you lose meaning.
For instance, consider these three Spanish words:


	esta

	
Feminine form of the adjective this, as in esta silla (this chair) or esta (this one).



	ésta

	
An archaic form of esta.



	está

	
The third-person form of the verb estar (to be), as in está feliz (he is happy).






While we would like to conflate the first two forms, they differ in meaning
from the third form, which we would like to keep separate.  Similarly:


	sé

	
The first person form of the verb saber (to know) as in Yo sé  (I know).



	se

	
The third-person reflexive pronoun used with many verbs, such as se sabe (it is known).






Unfortunately, there is no easy way to separate words that should have
their diacritics removed from words that shouldn’t.  And it is quite likely
that your users won’t know either.


Instead, we index the text twice: once in the original form and once with
diacritics removed:


PUT /my_index/_mapping/my_type
{
  "properties": {
    "title": { [image: 1]
      "type":           "string",
      "analyzer":       "standard",
      "fields": {
        "folded": { [image: 2]
          "type":       "string",
          "analyzer":   "folding"
        }
      }
    }
  }
}


	[image: 1]

	The title field uses the standard analyzer and will contain
the original word with diacritics in place.


	[image: 2]

	The title.folded field uses the folding analyzer, which strips
the diacritical marks.





You can test the field mappings by using the analyze API on the sentence
Esta está loca (This woman is crazy):


GET /my_index/_analyze?field=title [image: 1]
Esta está loca

GET /my_index/_analyze?field=title.folded [image: 2]
Esta está loca


	[image: 1]

	Emits esta, está, loca


	[image: 2]

	Emits esta, esta, loca





Let’s index some documents to test it out:


PUT /my_index/my_type/1
{ "title": "Esta loca!" }

PUT /my_index/my_type/2
{ "title": "Está loca!" }


Now we can search across both fields, using the multi_match query in
most_fields mode to combine the scores from each field:


GET /my_index/_search
{
  "query": {
    "multi_match": {
      "type":     "most_fields",
      "query":    "esta loca",
      "fields": [ "title", "title.folded" ]
    }
  }
}


Running this query through the validate-query API helps to explain how the
query is executed:


GET /my_index/_validate/query?explain
{
  "query": {
    "multi_match": {
      "type":     "most_fields",
      "query":    "está loca",
      "fields": [ "title", "title.folded" ]
    }
  }
}


The multi-match query searches for the original form of the word (está) in the title field,
and the form without diacritics esta in the title.folded field:

(title:está        title:loca       )
(title.folded:esta title.folded:loca)


It doesn’t matter whether the user searches for esta or está; both
documents will match because the form without diacritics exists in the the
title.folded field.  However, only the original form exists in the title
field. This extra match will push the document containing the original form of
the word to the top of the results list.


We use the title.folded field to  widen the net in order to match more
documents, and use the original title field to push the most relevant
document to the top. This same technique can be used wherever an analyzer is
used, to increase matches at the expense of meaning.

Tip

The asciifolding filter does have an option called preserve_original that
allows you to index the original token and the folded token in the same
position in the same field.  With this option enabled, you would end up with
something like this:

Position 1     Position 2
--------------------------
(ésta,esta)    loca
--------------------------


While this appears to be a nice way to save space, it does mean that you have
no way of saying, “Give me an exact match on the original word.”  Mixing
tokens with and without diacritics can also end up interfering with term-frequency counts, resulting in less-reliable relevance calcuations.


As a rule, it is cleaner to index each field variant into a separate field,
as we have done in this section.


























Living in a Unicode World


When Elasticsearch compares one token with another, it does so at the byte
level. In other words, for two tokens to be considered the same, they need to
consist of exactly the same bytes.  Unicode, however, allows you to write the
same letter in different ways.


For instance, what’s the difference between é and é? It
depends on who you ask. According to Elasticsearch, the first one consists of
the two bytes 0xC3 0xA9, and the second one consists of three bytes, 0x65
0xCC 0xReducing Words to Their Root Form

Chapter 21. Reducing Words to Their Root Form



Most languages of the world are inflected, meaning that words can change
their form to express differences in the following:



	
Number:      fox, foxes



	
Tense:       pay, paid, paying



	
Gender:      waiter, waitress



	
Person:      hear, hears



	
Case:        I, me, my



	
Aspect:      ate, eaten



	
Mood:        so be it, were it so






While inflection aids expressivity, it interferes with retrievability, as a
single root word sense (or meaning) may be represented by many different
sequences of letters. English is a weakly inflected language (you could
ignore inflections and still get reasonable search results), but some other
languages are highly inflected and need extra work in order to achieve
high-quality search results.


Stemming attempts to remove the differences between inflected forms of a
word, in order to reduce each word to its root form. For instance foxes may
be reduced to the root fox, to remove the difference between singular and
plural in the same way that we removed the difference between lowercase and
uppercase.


The root form of a word may not even be a real word. The words jumping and
jumpiness may both be stemmed to jumpi. It doesn’t matter—as long as
the same terms are produced at index time and at search time, search will just
work.


If stemming were easy, there would be only one implementation. Unfortunately,
stemming is an inexact science that suffers from two issues: understemming
and overstemming.


Understemming is the failure to reduce words with the same meaning to the same
root. For example, jumped and jumps may be reduced to jump, while
jumping may be reduced to jumpi.  Understemming reduces retrieval
relevant documents are not returned.


Overstemming is the failure to keep two words with distinct meanings separate.
For instance, general and generate may both be stemmed to gener.
Overstemming reduces precision: irrelevant documents are returned when they
shouldn’t be.


Lemmatization

A lemma is the canonical, or dictionary, form of a set of related words—the
lemma of paying, paid, and pays is pay.  Usually the lemma resembles
the words it is related to but sometimes it doesn’t — the lemma of is,
was, am, and being is be.


Lemmatization, like stemming, tries to group related words, but it goes one
step further than stemming in that it tries to group words by their word
sense, or meaning.  The same word may represent two  meanings—for example,wake can mean to wake up or a funeral.  While lemmatization would
try to distinguish these two word senses, stemming would incorrectly conflate
them.


Lemmatization is a much more complicated and expensive process that needs to
understand the context in which words appear in order to make decisions
about what they mean. In practice, stemming appears to be just as effective
as lemmatization, but with a much lower cost.




First we will discuss the two classes of stemmers available in Elasticsearch—“Algorithmic Stemmers” and “Dictionary Stemmers”—and then look at how to
choose the right stemmer for your needs in “Choosing a Stemmer”.  Finally,
we will discuss options for tailoring stemming in “Controlling Stemming” and
“Stemming in situ”.








Algorithmic Stemmers


Most of the stemmers available in Elasticsearch are algorithmic in that they
apply a series of rules to a word in order to reduce it to its root form, such
as stripping the final s or es from plurals.   They don’t have to know
anything about individual words in order to stem them.


These algorithmic stemmers have the advantage that they are available out of
the box, are fast, use little memory, and work well for regular words.  The
downside is that they don’t cope well with irregular words like be, are,
and am, or mice and mouse.


One of the earliest stemming algorithms is the Porter stemmer for English,
which is still the recommended English stemmer today.  Martin Porter
subsequently went on to create the
Snowball language for creating stemming
algorithms, and a number of the stemmers available in Elasticsearch are
written in Snowball.

Tip

The kstem token filter is a stemmer
for English which combines the algorithmic approach with a built-in
dictionary. The dictionary contains a list of root words and exceptions in
order to avoid conflating words incorrectly. kstem tends to stem less
aggressively than the Porter stemmer.












Using an Algorithmic Stemmer


While you can use the
porter_stem or
kstem token filter directly, or
create a language-specific Snowball stemmer with the
snowball token filter, all of the
algorithmic stemmers are exposed via a single unified interface:
the stemmer token filter, which
accepts the language parameter.


For instance, perhaps you find the default stemmer used by the english
analyzer to be too aggressive and you want to make it less aggressive.
The first step is to look up the configuration for the english analyzer
in the language analyzers
documentation, which shows the following:


{
  "settings": {
    "analysis": {
      "filter": {
        "english_stop": {
          "type":       "stop",
          "stopwords":  "_english_"
        },
        "english_keywords": {
          "type":       "keyword_marker", [image: 1]
          "keywords":   []
        },
        "english_stemmer": {
          "type":       "stemmer",
          "language":   "english" [image: 2]
        },
        "english_possessive_stemmer": {
          "type":       "stemmer",
          "language":   "possessive_english" [image: 2]
        }
      },
      "analyzer": {
        "english": {
          "tokenizer":  "standard",
          "filter": [
            "english_possessive_stemmer",
            "lowercase",
            "english_stop",
            "english_keywords",
            "english_stemmer"
          ]
        }
      }
    }
  }
}


	[image: 1]

	The keyword_marker token filter lists words that should not be
stemmed.  This defaults to the empty list.


	[image: 2]

	The english analyzer uses two stemmers: the possessive_english
and the english stemmer. The possessive stemmer removes 's
from any words before passing them on to the english_stop,
english_keywords, and english_stemmer.





Having reviewed the current configuration, we can use it as the basis for
a new analyzer, with the following changes:



	
Change the english_stemmer from english (which maps to the
porter_stem token filter)
to light_english (which maps to the less aggressive
kstem token filter).



	
Add the asciifolding token filter to
remove any diacritics from foreign words.



	
Remove the keyword_marker token filter, as we don’t need it.
(We discuss this in more detail in “Controlling Stemming”.)






Our new custom analyzer would look like this:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "english_stop": {
          "type":       "stop",
          "stopwords":  "_english_"
        },
        "light_english_stemmer": {
          "type":       "stemmer",
          "language":   "light_english" [image: 1]
        },
        "english_possessive_stemmer": {
          "type":       "stemmer",
          "language":   "possessive_english"
        }
      },
      "analyzer": {
        "english": {
          "tokenizer":  "standard",
          "filter": [
            "english_possessive_stemmer",
            "lowercase",
            "english_stop",
            "light_english_stemmer", [image: 1]
            "asciifolding" [image: 2]
          ]
        }
      }
    }
  }
}


	[image: 1]

	Replaced the english stemmer with the less aggressive
light_english stemmer


	[image: 2]

	Added the asciifolding token filter



























Dictionary Stemmers


Dictionary stemmers work quite differently from
algorithmic stemmers. Instead
of applying a standard set of rules to each word, they simply look up the
word in the dictionary.  Theoretically, they could produce much better
results than an algorithmic stemmer. A dictionary stemmer should be able to do the following:



	
Return the correct root word for irregular forms such as feet and mice



	
Recognize the distinction between words that are similar but have
different word senses—for example, organ and organization






In practice, a good algorithmic stemmer usually outperforms a dictionary
stemmer. There are a couple of reasons this should be so:


	Dictionary quality

	

A dictionary stemmer is only as good as its dictionary.  The Oxford English
Dictionary website estimates that the English language contains approximately
750,000 words (when inflections are included). Most English dictionaries
available for computers contain about 10% of those.


The meaning of words changes with time.  While stemming mobility to mobil
may have made sense previously, it now conflates the idea of mobility with a
mobile phone. Dictionaries need to be kept current, which is a time-consuming
task.  Often, by the time a dictionary has been made available, some of its
entries are already out-of-date.


If a dictionary stemmer encounters a word not in its dictionary, it doesn’t
know how to deal with it.  An algorithmic stemmer, on the other hand, will
apply the same rules as before, correctly or incorrectly.






	Size and performance

	

A dictionary stemmer needs to load all words, all prefixes, and all suffixes
into memory. This can use a significant amount of RAM. Finding the right stem
for a word is often considerably more complex than the equivalent process with
an algorithmic stemmer.


Depending on the quality of the dictionary, the process of removing prefixes
and suffixes may be more or less efficient.  Less-efficient forms can slow
the stemming process significantly.


Algorithmic stemmers, on the other hand, are usually simple, small, and fast.








Tip
If a good algorithmic stemmer exists for your language, it is usually a
better choice than a dictionary-based stemmer.  Languages with poor (or nonexistent) algorithmic stemmers can use the Hunspell dictionary stemmer, which
we discuss in the next section.


















Hunspell Stemmer


Elasticsearch provides dictionary-based stemming via the
hunspell token filter.
Hunspell hunspell.sourceforge.net is the
spell checker used by Open Office, LibreOffice, Chrome, Firefox, Thunderbird, and many
other open and closed source projects.


Hunspell dictionaries can be obtained from the following:



	
extensions.openoffice.org: Download and
unzip the .oxt extension file.



	
addons.mozilla.org:
Download and unzip the .xpi addon file.



	
OpenOffice archive: Download and unzip the .zip file.






A Hunspell dictionary consists of two files with the same base name—such as
en_US—but with one of two extensions:


	.dic

	
Contains all the root words, in alphabetical order, plus a code representing
all possible suffixes and prefixes (which collectively are known as affixes)



	.aff

	
Contains the actual prefix or suffix transformation for each code listed
in the .dic file














Installing a Dictionary


The Hunspell token filter looks for dictionaries within a dedicated Hunspell
directory, which defaults to  ./config/hunspell/. The .dic and .aff
files should be placed in a subdirectory whose name represents the language
or locale of the dictionaries.  For instance, we could create a Hunspell
stemmer for American English with the following layout:


config/
  └ hunspell/ [image: 1]
      └ en_US/ [image: 2]
          ├ en_US.dic
          ├ en_US.aff
          └ settings.yml [image: 3]


	[image: 1]

	The location of the Hunspell directory can be changed by setting
indices.analysis.hunspell.dictionary.location in the
config/elasticsearch.yml file.


	[image: 2]

	en_US will be the name of the locale or language that we pass to the
hunspell token filter.


	[image: 3]

	Per-language settings file, described in the following section.




















Per-Language Settings


The settings.yml file contains settings that apply to all of the
dictionaries within the language directory, such as these:


---
ignore_case:          true
strict_affix_parsing: true


The meaning of these settings is as follows:


	ignore_case

	

Hunspell dictionaries are case sensitive by default: the surname Booker is a
different word from the noun booker, and so should be stemmed differently.  It
may seem like a good idea to use the hunspell stemmer in case-sensitive
mode, but that can complicate things:



	
A word at the beginning of a sentence will be capitalized, and thus appear
to be a proper noun.



	
The input text may be all uppercase, in which case almost no words will be
found.



	
The user may search for names in all lowercase, in which case no capitalized
words will be found.






As a general rule, it is a good idea to set ignore_case to true.






	strict_affix_parsing

	
The quality of dictionaries varies greatly. Some dictionaries that are
available online have malformed rules in the .aff file.  By default, Lucene
will throw an exception if it can’t parse an affix rule. If you need to deal
with a broken affix file, you can set strict_affix_parsing to false to tell
Lucene to ignore the broken rules.






Custom Dictionaries

If multiple dictionaries (.dic files) are placed in the same
directory, they will be merged together at load time. This allows you to
tailor the downloaded dictionaries with your own custom word lists:


config/
  └ hunspell/
      └ en_US/  [image: 1]
          ├ en_US.dic
          ├ en_US.aff [image: 2]
          ├ custom.dic
          └ settings.yml


	[image: 1]

	The custom and en_US dictionaries will be merged.


	[image: 2]

	Multiple .aff files are not allowed, as they could use
conflicting rules.





The format of the .dic and .aff files is discussed in
“Hunspell Dictionary Format”.



















Creating a Hunspell Token Filter


Once your dictionaries are installed on all nodes, you can define a hunspell
token filter that uses them:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "en_US": {
          "type":     "hunspell",
          "language": "en_US" [image: 1]
        }
      },
      "analyzer": {
        "en_US": {
          "tokenizer":  "standard",
          "filter":   [ "lowercase", "en_US" ]
        }
      }
    }
  }
}


	[image: 1]

	The language has the same name as the directory where
the dictionary lives.





You can test the new analyzer with the analyze API,
and compare its output to that of the english analyzer:


GET /my_index/_analyze?analyzer=en_US [image: 1]
reorganizes

GET /_analyze?analyzer=english [image: 2]
reorganizes


	[image: 1]

	Returns organize


	[image: 2]

	Returns reorgan





An interesting property of the hunspell stemmer, as can be seen in the
preceding example, is that it can remove prefixes as well as as suffixes. Most
algorithmic stemmers remove suffixes only.

Tip

Hunspell dictionaries can consume a few megabytes of RAM.  Fortunately,
Elasticsearch creates only a single instance of a dictionary per node.  All
shards that use the same Hunspell analyzer share the same instance.



















Hunspell Dictionary Format


While it is not necessary to understand the format of a Hunspell dictionary in
order to use the hunspell tokenizer, understanding the format will help you
write your own custom dictionaries.  It is quite simple.


For instance, in the US English dictionary, the en_US.dic file contains an entry for
the word analyze, which looks like this:


analyze/ADSG


The en_US.aff file contains the prefix or suffix rules for the A, G,
D, and S flags.  Each flag consists of a number of rules, only one of
which should match. Each rule has the following format:


[type] [flag] [letters to remove] [letters to add] [condition]


For instance, the following is suffix (SFX) rule D.  It says that,  when a
word ends in a consonant (anything but a, e, i, o, or u) followed by
a y, it can have the y removed and ied added (for example, ready →
readied).


SFX    D      y   ied  [^aeiou]y


The rules for the A, G, D, and S flags mentioned previously are as follows:


SFX D Y 4
SFX D   0     d          e [image: 1]
SFX D   y     ied        [^aeiou]y
SFX D   0     ed         [^ey]
SFX D   0     ed         [aeiou]y

SFX S Y 4
SFX S   y     ies        [^aeiou]y
SFX S   0     s          [aeiou]y
SFX S   0     es         [sxzh]
SFX S   0     s          [^sxzhy] [image: 2]

SFX G Y 2
SFX G   e     ing        e [image: 3]
SFX G   0     ing        [^e]

PFX A Y 1
PFX A   0     re         . [image: 4]


	[image: 1]

	analyze ends in an e, so it can become analyzed by adding a d.


	[image: 2]

	analyze does not end in s, x, z, h, or y, so it can become
analyzes by adding an s.


	[image: 3]

	analyze ends in an e, so it can become analyzing by removing the e
and adding ing.


	[image: 4]

	The prefix re can be added to form reanalyze. This rule can be
combined with the suffix rules to form reanalyzes, reanalyzed,
reanalyzing.





More information about the Hunspell syntax can be found on the Hunspell documentation site.
























Choosing a Stemmer


The documentation for the
stemmer token filter
lists multiple stemmers for some languages.  For English we have the following:


	english

	
The porter_stem token filter.



	light_english

	
The kstem token filter.



	minimal_english

	
The EnglishMinimalStemmer in Lucene, which removes plurals



	lovins

	
The Snowball based
Lovins
stemmer, the first stemmer ever produced.



	porter

	
The Snowball based
Porter stemmer



	porter2

	
The Snowball based
Porter2 stemmer



	possessive_english

	
The EnglishPossessiveFilter in Lucene which removes 's






Add to that list the Hunspell stemmer with the various English dictionaries
that are available.


One thing is for sure: whenever more than one solution exists for a problem,
it means that none of the solutions solves the problem adequately. This
certainly applies to stemming — each stemmer uses a different approach that
overstems and understems words to a different degree.


The stemmer documentation page highlights the recommended stemmer for
each language in bold, usually because it offers a reasonable compromise
between performance and quality. That said, the recommended stemmer may not be
appropriate for all use cases. There is no single right answer to the question
of which is the best stemmer — it depends very much on your requirements.
There are three factors to take into account when making a choice:
performance, quality, and degree.










Stemmer Performance


Algorithmic stemmers are typically four or five times faster than Hunspell
stemmers. “Handcrafted” algorithmic stemmers are usually, but not always,
faster than their Snowball equivalents.  For instance, the porter_stem token
filter is significantly faster than the Snowball implementation of the Porter
stemmer.


Hunspell stemmers have to load all words, prefixes, and suffixes into memory,
which can consume a few megabytes of RAM.  Algorithmic stemmers, on the other
hand, consist of a small amount of code and consume very little memory.

















Stemmer Quality


All languages, except Esperanto, are irregular. While more-formal words tend
to follow a regular pattern, the most commonly used words often have irregular rules. Some stemming algorithms have been developed over years of
research and produce reasonably high-quality results. Others have been
assembled more quickly with less research and deal only with the most common
cases.


While Hunspell offers the promise of dealing precisely with irregular words,
it often falls short in practice. A dictionary stemmer is only as good as its
dictionary.   If Hunspell comes across a word that isn’t in its dictionary, it
can do nothing with it. Hunspell requires an extensive, high-quality, up-to-date dictionary in order to produce good results; dictionaries of this
caliber are few and far between. An algorithmic stemmer, on the other hand,
will happily deal with new words that didn’t exist when the designer created
the algorithm.


If a good algorithmic stemmer is available for your language, it makes sense
to use it rather than Hunspell.  It will be faster, will consume less memory, and
will generally be as good or better than the Hunspell equivalent.


If accuracy and customizability is important to you, and you need (and
have the resources) to maintain a custom dictionary, then Hunspell gives you
greater flexibility than the algorithmic stemmers. (See
“Controlling Stemming” for customization techniques that can be used with
any stemmer.)

















Stemmer Degree


Different stemmers overstem and understem to a different degree.  The light_
stemmers stem less aggressively than the standard stemmers, and the minimal_
stemmers less aggressively still.  Hunspell stems aggressively.


Whether you want aggressive or light stemming depends on your use case.  If
your search results are being consumed by a clustering algorithm, you may
prefer to match more widely (and, thus, stem more aggressively).  If your
search results are intended for human consumption, lighter stemming usually
produces better results.  Stemming nouns and adjectives is more important for
search than stemming verbs, but this also depends on the language.


The other factor to take into account is the size of your document collection.
With a small collection such as a catalog of 10,000 products, you probably want to
stem more aggressively to ensure that you match at least some documents.  If
your collection is large, you likely will get good matches with lighter
stemming.

















Making a Choice


Start out with a recommended stemmer.  If it works well enough, there is
no need to change it.  If it doesn’t, you will need to spend some time
investigating and comparing the stemmers available for language in order to
find the one that best suits your purposes.
























Controlling Stemming


Out-of-the-box stemming solutions are never perfect.  Algorithmic stemmers,
especially, will blithely apply their rules to any words they encounter,
perhaps conflating words that you would prefer to keep separate.  Maybe, for
your use case, it is important to keep skies and skiing as distinct words
rather than stemming them both down to ski (as would happen with the
english analyzer).


The keyword_marker and
stemmer_override token filters
allow us to customize the stemming process.










Preventing Stemming


The stem_exclusion parameter for language analyzers (see
“Configuring Language Analyzers”) allowed us to specify a list of words that
should not be stemmed.  Internally, these language analyzers use the
keyword_marker token filter
to mark the listed words as keywords, which prevents subsequent stemming
token filters from touching those words.


For instance, we can create a simple custom analyzer that uses the
porter_stem token filter,
but prevents the word skies from being stemmed:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "no_stem": {
          "type": "keyword_marker",
          "keywords": [ "skies" ] [image: 1]
        }
      },
      "analyzer": {
        "my_english": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "no_stem",
            "porter_stem"
          ]
        }
      }
    }
  }
}


	[image: 1]

	They keywords parameter could accept multiple words.





Testing it with the analyze API shows that just the word skies has
been excluded from stemming:


GET /my_index/_analyze?analyzer=my_english
sky skies skiing skis [image: 1]


	[image: 1]

	Returns: sky, skies, ski, ski




Tip

While the language analyzers allow us only to specify an array of words in the
stem_exclusion parameter, the keyword_marker token filter also accepts a
keywords_path parameter that allows us to store all of our keywords in a
file. The file should contain one word per line, and must be present on every
node in the cluster. See “Updating Stopwords” for tips on how to update this
file.



















Customizing Stemming


In the preceding example, we prevented skies from being stemmed, but perhaps we
would prefer it to be stemmed to sky instead.  The
stemmer_override token
filter allows us to specify our own custom stemming rules. At the same time,
we can handle some irregular forms like stemming mice to mouse and feet
to foot:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "custom_stem": {
          "type": "stemmer_override",
          "rules": [ [image: 1]
            "skies=>sky",
            "mice=>mouse",
            "feet=>foot"
          ]
        }
      },
      "analyzer": {
        "my_english": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "custom_stem", [image: 2]
            "porter_stem"
          ]
        }
      }
    }
  }
}

GET /my_index/_analyze?analyzer=my_english
The mice came down from the skies and ran over my feet [image: 3]


	[image: 1]

	Rules take the form original=>stem.


	[image: 2]

	The stemmer_override filter must be placed before the stemmer.


	[image: 3]

	Returns the, mouse, came, down, from, the, sky,
and, ran, over, my, foot.




Tip
Just as for the keyword_marker token filter, rules can be stored
in a file whose location should be specified with the rules_path
parameter.

























Stemming in situ


For the sake of completeness, we will finish this chapter by explaining how to
index stemmed words into the same field as unstemmed words. As an example,
analyzing the sentence The quick foxes jumped would produce the following
terms:


Pos 1: (the)
Pos 2: (quick)
Pos 3: (foxes,fox) [image: 1]
Pos 4: (jumped,jump) [image: 1]


	[image: 1]

	The stemmed and unstemmed forms occupy the same position.




Warning
Read “Is Stemming in situ a Good Idea” before using this approach.



To achieve stemming in situ, we will use the
keyword_repeat
token filter, which, like the keyword_marker token filter (see
“Preventing Stemming”), marks each term as a keyword to prevent the subsequent
stemmer from touching it.  However, it also repeats the term in the same
position, and this repeated term is stemmed.


Using the keyword_repeat token filter alone would result in the following:


Pos 1: (the,the) [image: 1]
Pos 2: (quick,quick) [image: 1]
Pos 3: (foxes,fox)
Pos 4: (jumped,jump)


	[image: 1]

	The stemmed and unstemmed forms are the same, and so are repeated
needlessly.





To prevent the useless repetition of terms that are the same in their stemmed
and unstemmed forms, we add the
unique token filter into the mix:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "unique_stem": {
          "type": "unique",
          "only_on_same_position": true [image: 1]
        }
      },
      "analyzer": {
        "in_situ": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "keyword_repeat", [image: 2]
            "porter_stem",
            "unique_stem" [image: 3]
          ]
        }
      }
    }
  }
}


	[image: 1]

	The unique token filter is set to remove duplicate tokens
only when they occur in the same position.


	[image: 2]

	The keyword_repeat token filter must appear before the
stemmer.


	[image: 3]

	The unique_stem filter removes duplicate terms after the
stemmer has done its work.













Is Stemming in situ a Good Idea


People like the idea of stemming in situ: “Why use an unstemmed field
and a stemmed field if I can just use one combined field?” But is it a
good idea? The answer is almost always no.  There are two problems.


The first is the inability to separate exact matches from inexact matches.  In
this chapter, we have seen that words with different meanings are often
conflated to the same stem word: organs and organization both stem to
organ.


In “Using Language Analyzers”, we demonstrated how to combine a query on a
stemmed field (to increase recall) with a query on an unstemmed field (to
improve relevance).  When the stemmed and unstemmed fields are separate, the
contribution of each field can be tuned by boosting one field over another
(see “Prioritizing Clauses”).  If, instead, the stemmed and unstemmed forms
appear in the same field, there is no way to tune your search results.


The second issue has to do with how the relevance score is calculated.  In
“What Is Relevance?”, we explained that part of the calculation depends on the
inverse document frequency — how often a word appears in all the documents
in our index.  Using in situ stemming for a document that contains  the text
jump jumped jumps would result in these terms:


Pos 1: (jump)
Pos 2: (jumped,jump)
Pos 3: (jumps,jump)


While jumped and jumps appear once each and so would have the correct IDF,
jump appears three times, greatly reducing its value as a search term in
comparison with the unstemmed forms.


For these reasons, we recommend against using stemming in situ.


















Synonyms

Chapter 23. Synonyms



While stemming helps to broaden the scope of search by simplifying inflected
words to their root form, synonyms broaden the scope by relating concepts and
ideas. Perhaps no documents match a query for “English queen,” but documents
that contain “British monarch” would probably be considered a good match.


A user might search for “the US” and expect to find documents that contain
United States, USA, U.S.A., America, or the States.
However, they wouldn’t expect to see results about the states of matter or
state machines.


This example provides a valuable lesson. It demonstrates how simple it is for
a human to distinguish between separate concepts, and how tricky it can be for
mere machines. The natural tendency is to try to provide synonyms for every
word in the language, to ensure that any document is findable with even the
most remotely related terms.


This is a mistake.  In the same way that we prefer light or minimal stemming
to aggressive stemming, synonyms should be used only where necessary. Users
understand why their results are limited to the words in their search query.
They are less understanding when their results seems almost random.


Synonyms can be used to conflate words that have pretty much the same meaning,
such as jump, leap, and hop, or pamphlet, leaflet, and brochure.
Alternatively, they can be used to make a word more generic.  For instance,
bird could be used as a more general synonym for owl or pigeon, and adult
could be used for man or woman.


Synonyms appear to be a simple concept but they are quite tricky to get right.
In this chapter, we explain the mechanics of using synonyms and discuss
the limitations and gotchas.

Tip

Synonyms are used to broaden the scope of what is considered a
matching document.  Just as with stemming or
partial matching, synonym fields should not be used
alone but should be combined with a query on a main field that contains
the original text in unadulterated form.  See “Most Fields” for an
explanation of how to maintain relevance when using synonyms.










Using Synonyms


Synonyms can replace existing tokens or be added to the token stream by using the
synonym token filter:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonym_filter": {
          "type": "synonym", [image: 1]
          "synonyms": [ [image: 2]
            "british,english",
            "queen,monarch"
          ]
        }
      },
      "analyzer": {
        "my_synonyms": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "my_synonym_filter" [image: 3]
          ]
        }
      }
    }
  }
}


	[image: 1]

	First, we define a token filter of type synonym.


	[image: 2]

	We discuss synonym formats in “Formatting Synonyms”.


	[image: 3]

	Then we create a custom analyzer that uses the my_synonym_filter.




Tip

Synonyms can be specified inline with the synonyms parameter, or in a
synonyms file that must be present on every node in the cluster. The path to
the synonyms file should be specified with the synonyms_path parameter, and
should be either absolute or relative to the Elasticsearch config directory.
See “Updating Stopwords” for techniques that can be used to refresh the
synonyms list.




Testing our analyzer with the analyze API shows the following:


GET /my_index/_analyze?analyzer=my_synonyms
Elizabeth is the English queen


Pos 1: (elizabeth)
Pos 2: (is)
Pos 3: (the)
Pos 4: (british,english) [image: 1]
Pos 5: (queen,monarch) [image: 1]


	[image: 1]

	All synonyms occupy the same position as the original term.





A document like this will match queries for any of the following: English queen,
British queen, English monarch, or British monarch.
Even a phrase query will work, because the position of
each term has been preserved.

Tip

Using the same synonym token filter at both index time and search time is
redundant.  If, at index time, we replace English with the two terms
english and british, then at search time we need to search for only one of
those terms.  Alternatively, if we don’t use synonyms at index time, then at
search time, we would need to convert a query for English into a query for
english OR british.


Whether to do synonym expansion at search or index time can be a difficult
choice.  We will explore the options more in “Expand or contract”.



















Formatting Synonyms


In their simplest form, synonyms are listed as comma-separated values:

"jump,leap,hop"


If any of these terms is encountered, it is replaced by all of the listed
synonyms.  For instance:


Original terms:   Replaced by:
────────────────────────────────
jump            → (jump,leap,hop)
leap            → (jump,leap,hop)
hop             → (jump,leap,hop)


Alternatively, with the => syntax, it is possible to specify a list of terms
to match (on the left side), and a list of one or more replacements (on
the right side):

"u s a,united states,united states of america => usa"
"g b,gb,great britain => britain,england,scotland,wales"


Original terms:   Replaced by:
────────────────────────────────
u s a           → (usa)
united states   → (usa)
great britain   → (britain,england,scotland,wales)


If multiple rules for the same synonyms are specified, they are merged
together.  The order of rules is not respected.  Instead, the longest matching
rule wins.  Take the following rules as an example:

"united states            => usa",
"united states of america => usa"


If these rules conflicted, Elasticsearch would turn United States of
America into the terms (usa),(of),(america).  Instead, the longest
sequence wins, and we end up with just the term (usa).

















Expand or contract


In “Formatting Synonyms”, we have seen that it is possible to replace synonyms by
simple expansion, simple contraction, or generic expansion.  We will look
at the trade-offs of each of these techniques in this section.

Tip
This section deals with single-word synonyms only.  Multiword
synonyms add another layer of complexity and are discussed later in
“Multiword Synonyms and Phrase Queries”.











Simple Expansion


With simple expansion, any of the listed synonyms is expanded into all of
the listed synonyms:

"jump,hop,leap"


Expansion can be applied either at index time or at query time.  Each has advantages
(⬆)︎ and disadvantages (⬇)︎. When to use which comes down to performance versus
flexibility.





	
	Index time
	Query time





	Index size

	⬇︎ Bigger index because all synonyms must be indexed.

	⬆︎ Normal.




	Relevance

	⬇︎ All synonyms will have the same IDF (see “What Is Relevance?”), meaning
      that more commonly used words will have the same weight as less commonly
      used words.

	⬆︎ The IDF for each synonym will be correct.




	Performance

	⬆︎ A query needs to find only the single term specified in the query string.

	⬇︎ A query for a single term is rewritten to look up all synonyms, which
      decreases performance.




	Flexibility

	⬇︎ The synonym rules can’t be changed for existing documents. For the new rules
      to have effect, existing documents have to be reindexed.

	⬆︎ Synonym rules can be updated without reindexing documents.






















Simple Contraction


Simple contraction maps a group of synonyms on the left side to a single
value on the right side:

"leap,hop => jump"


It must be applied both at index time and at query time, to ensure that query
terms are mapped to the same single value that exists in the index.


This approach has some advantages and some disadvantages compared to the simple expansion approach:


	Index size

	
⬆︎ The index size is normal, as only a single term is indexed.



	Relevance

	
⬇︎ The IDF for all terms is the same, so you can’t distinguish between more
commonly used words and less commonly used words.



	Performance

	
⬆︎ A query needs to find only the single term that appears in the index.



	Flexibility

	

⬆︎ New synonyms can be added to the left side of the rule and applied at
query time. For instance, imagine that we wanted to add the word bound to
the rule specified previously. The following rule would work for queries that
contain bound or for newly added documents that contain bound:

"leap,hop,bound => jump"


But we could expand the effect to also take into account existing documents
that contain bound by writing the rule as follows:

"leap,hop,bound => jump,bound"


When you reindex your documents, you could revert to the previous rule to gain
the performance benefit of querying only a single term.
























Genre Expansion


Genre expansion is quite different from simple contraction or expansion.
Instead of treating all synonyms as equal, genre expansion widens the meaning
of a term to be more generic. Take these rules, for example:

"cat    => cat,pet",
"kitten => kitten,cat,pet",
"dog    => dog,pet"
"puppy  => puppy,dog,pet"


By applying genre expansion at index time:



	
A query for kitten would find just documents about kittens.



	
A query for cat would find documents abouts kittens and cats.



	
A query for pet would find documents about kittens, cats, puppies, dogs,
or pets.






Alternatively, by applying genre expansion at query time, a query for kitten
would be expanded to return documents that mention kittens, cats, or pets
specifically.


You could also have the best of both worlds by applying expansion at index
time to ensure that the genres are present in the index. Then, at query time,
you can choose to not apply synonyms (so that a query for kitten
returns only documents about kittens) or to apply synonyms in order to match
kittens, cats and pets (including the canine variety).


With the preceding example rules above, the IDF for kitten will be correct, while the
IDF for cat and pet will be artificially deflated.  However, this
works in your favor—a genre-expanded query for kitten OR cat OR pet will
rank documents with kitten highest, followed by documents with cat, and
documents with pet would be right at the bottom.
























Synonyms and The Analysis Chain


The example we showed in “Formatting Synonyms”,  used u s a as a synonym. Why
did we use that instead of U.S.A.?  The reason is that the synonym token
filter sees only the terms that the previous token filter or tokenizer has
emitted.


Imagine that we have an analyzer that consists of the standard tokenizer,
with the lowercase token filter followed by a synonym token filter. The
analysis process for the text U.S.A. would look like this:


original string                  → "U.S.A."
standard           tokenizer     → (U),(S),(A)
lowercase          token filter  → (u),(s),(a)
synonym            token filter  → (usa)


If we had specified the synonym as U.S.A., it would never match anything
because, by the time my_synonym_filter sees the terms, the periods have been
removed and the letters have been lowercased.


This is an important point to consider.  What if we want to combine synonyms
with stemming, so that jumps, jumped, jump, leaps, leaped, and
leap are all indexed as the single term jump?  We could place the synonyms
filter before the stemmer and list all inflections:

"jumps,jumped,leap,leaps,leaped => jump"


But the more concise way would be to place the synonyms filter after the
stemmer, and to list just the root words that would be emitted by the stemmer:

"leap => jump"










Case-Sensitive Synonyms


Normally, synonym filters are placed after the lowercase token filter and so
all synonyms are written in lowercase, but sometimes that can lead to odd
conflations. For instance, a CAT scan and a cat are quite different, as
are PET (positron emmision tomography) and a pet. For that matter, the
surname Little is distinct from the adjective little (although if a
sentence starts with the adjective, it will be uppercased anyway).


If you need use case to distinguish between word senses, you will need to
place your synonym filter before the lowercase filter. Of course, that means
that your synonym rules would need to list all of the case variations that you
want to match (for example, Little,LITTLE,little).


Instead of that, you could have two synonym filters: one to catch the case-sensitive
synonyms and one for all the case-insentive synonyms.  For instance, the
case-sensitive rules could look like this:

"CAT,CAT scan           => cat_scan"
"PET,PET scan           => pet_scan"
"Johnny Little,J Little => johnny_little"
"Johnny Small,J Small   => johnny_small"


And the case-insentive rules could look like this:

"cat                    => cat,pet"
"dog                    => dog,pet"
"cat scan,cat_scan scan => cat_scan"
"pet scan,pet_scan scan => pet_scan"
"little,small"


The case-sensitive rules would CAT scan but would match only the
CAT in CAT scan. For this reason, we have the odd-looking rule cat_scan
scan in the case-insensitive list to catch bad replacements.

Tip
You can see how quickly it can get complicated. As always, the analyze API
is your friend—use it to check that your analyzers are configured
correctly.  See “Testing Analyzers”.

























Multiword Synonyms and Phrase Queries


So far, synonyms appear to be quite straightforward. Unfortunately, this is
where things start to go wrong. For phrase queries to
function correctly, Elasticsearch needs to know the position that each term
occupies in the original text. Multiword synonyms can play havoc with term
positions, especially when the injected synonyms are of differing lengths.


To demonstrate, we’ll create a synonym token filter that uses this rule:

"usa,united states,u s a,united states of america"


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonym_filter": {
          "type": "synonym",
          "synonyms": [
            "usa,united states,u s a,united states of america"
          ]
        }
      },
      "analyzer": {
        "my_synonyms": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "my_synonym_filter"
          ]
        }
      }
    }
  }
}

GET /my_index/_analyze?analyzer=my_synonyms&text=
The United States is wealthy


The tokens emitted by the analyze request look like this:


Pos 1:  (the)
Pos 2:  (usa,united,u,united)
Pos 3:  (states,s,states)
Pos 4:  (is,a,of)
Pos 5:  (wealthy,america)


If we were to index a document analyzed with synonyms as above, and then run a
phrase query without synonyms, we’d have some surprising results.  These
phrases would not match:



	
The usa is wealthy



	
The united states of america is wealthy



	
The U.S.A. is wealthy






However, these phrases would:



	
United states is wealthy



	
Usa states of wealthy



	
The U.S. of wealthy



	
U.S. is america






If we were to use synonyms at query time instead, we would see even more-bizarre matches. Look at the output of this validate-query request:


GET /my_index/_validate/query?explain
{
  "query": {
    "match_phrase": {
      "text": {
        "query": "usa is wealthy",
        "analyzer": "my_synonyms"
      }
    }
  }
}


The explanation is as follows:

"(usa united u united) (is states s states) (wealthy a of) america"


This would match documents containg u is of america but wouldn’t match any
document that didn’t contain the term america.

Tip

Multiword synonyms affect highlighting in a similar way.  A query for USA
could end up returning a highlighted snippet such as: “The United States
is wealthy”.












Use Simple Contraction for Phrase Queries


The way to avoid this mess is to use simple contraction
to inject a single term that represents all synonyms, and to use the same
synonym token filter at query time:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonym_filter": {
          "type": "synonym",
          "synonyms": [
            "united states,u s a,united states of america=>usa"
          ]
        }
      },
      "analyzer": {
        "my_synonyms": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "my_synonym_filter"
          ]
        }
      }
    }
  }
}

GET /my_index/_analyze?analyzer=my_synonyms
The United States is wealthy


The result of the preceding analyze request looks much more sane:


Pos 1:  (the)
Pos 2:  (usa)
Pos 3:  (is)
Pos 5:  (wealthy)


And repeating the validate-query request that we made previously yields a simple,
sane explanation:

"usa is wealthy"


The downside of this approach is that, by reducing united states of america
down to the single term usa, you can’t use the same field to find just the
word united or states. You would need to use a separate field with a
different analysis chain for that purpose.

















Synonyms and the query_string Query


We have tried to avoid discussing the query_string query because we don’t
recommend using it.  In More-Complicated Queries, we said that, because the
query_string query supports a terse mini search-syntax, it could
frequently lead to surprising results or even syntax errors.


One of the gotchas of this query involves multiword synonyms. To
support its search-syntax, it has to parse the query string to recognize
special operators like AND, OR, +, -, field:, and so forth.  (See the full
query_string syntax
here.)


As part of this parsing process, it breaks up the query string on whitespace,
and passes each word that it finds to the relevant analyzer separately. This
means that your synonym analyzer will never receive a multiword synonym.
Instead of seeing United States as a single string, the analyzer will
receive United and States separately.


Fortunately, the trustworthy match query supports no such syntax, and
multiword synonyms will be passed to the analyzer in their entirety.
























Symbol Synonyms


The final part of this chapter is devoted to symbol synonyms, which are
unlike the synonyms we have discussed until now.  Symbol synonyms are
string aliases used to represent symbols that would otherwise be removed
during tokenization.


While most punctuation is seldom important for full-text search, character
combinations like emoticons may be very signficant, even changing the meaning
of the the text.  Compare these:



	
I am thrilled to be at work on Sunday.



	
I am thrilled to be at work on Sunday :(






The standard tokenizer would simply strip out the emoticon in the second
sentence, conflating two sentences that have quite different intent.


We can use the
mapping character filter
to replace emoticons with symbol synonyms like emoticon_happy and
emoticon_sad before the text is passed to the tokenizer:


PUT /my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "emoticons": {
          "type": "mapping",
          "mappings": [ [image: 1]
            ":)=>emoticon_happy",
            ":(=>emoticon_sad"
          ]
        }
      },
      "analyzer": {
        "my_emoticons": {
          "char_filter": "emoticons",
          "tokenizer":   "standard",
          "filter":    [ "lowercase" ]
          ]
        }
      }
    }
  }
}

GET /my_index/_analyze?analyzer=my_emoticons
I am :) not :( [image: 2]


	[image: 1]

	The mappings filter replaces the characters to the left of =>
with those to the right.


	[image: 2]

	Emits tokens i, am, emoticon_happy, not, emoticon_sad.





It is unlikely that anybody would ever search for emoticon_happy, but
ensuring that important symbols like emoticons are included in the index can
be helpful when doing sentiment analysis.  Of course, we could equally
have used real words, like happy and sad.

Tip
The mapping character filter is useful for simple replacements of exact
character sequences. For more-flexible pattern matching, you can use regular
expressions with the
pattern_replace character filter.












Typoes and Mispelings

Chapter 24. Typoes and Mispelings



We expect a query on structured data like dates and prices to return only
documents that match exactly.  However, good full-text search shouldn’t have the
same restriction. Instead, we can widen the net to include words that may
match, but use the relevance score to push the better matches to the top
of the result set.


In fact, full-text search that only matches exactly will probably frustrate
your users. Wouldn’t you expect a search for “quick brown fox” to match a
document containing “fast brown foxes,” “Johnny Walker” to match
“Johnnie Walker,” or “Arnold Shcwarzenneger” to match “Arnold
Schwarzenegger”?


If documents exist that do contain exactly what the user has queried,
they should appear at the top of the result set, but weaker matches can be
included further down the list.  If no documents match exactly, at least we
can show the user potential matches; they may even be what the user
originally intended!


We have already looked at diacritic-free matching in Chapter 20,
word stemming in Chapter 21, and synonyms in Chapter 23, but all of those
approaches presuppose that words are spelled correctly, or that there is only
one way to spell each word.


Fuzzy matching allows for query-time matching of misspelled words, while
phonetic token filters at index time can be used for sounds-like matching.








Fuzziness


Fuzzy matching treats two words that are “fuzzily” similar as if they were
the same word. First, we need to define what we mean by fuzziness.


In 1965, Vladimir Levenshtein developed the
Levenshtein distance, which
measures the number of single-character edits required to transform
one word into the other. He proposed three types of one-character edits:



	
Substitution of one character for another: _f_ox → _b_ox



	
Insertion of a new character: sic → sic_k_



	
Deletion of a character:: b_l_ack → back






Frederick Damerau
later expanded these operations to include one more:



	
Transposition of two adjacent characters: _st_ar → _ts_ar






For example, to convert the word bieber into beaver requires the
following steps:


	
Substitute v for b: bie_b_er → bie_v_er



	
Substitute a for i: b_i_ever → b_a_ever



	
Transpose a and e:  b_ae_ver → b_ea_ver







These three steps represent a
Damerau-Levenshtein edit distance
of 3.


Clearly, bieber is a long way from beaver—they are too far apart to be
considered a simple misspelling.  Damerau observed that 80% of human
misspellings have an edit distance of 1. In other words, 80% of misspellings
could be corrected with a single edit to the original string.


Elasticsearch supports a maximum edit distance, specified with the fuzziness
parameter, of 2.


Of course, the impact that a single edit has on a string depends on the
length of the string.  Two edits to the word hat can produce mad, so
allowing two edits on a string of length 3 is overkill. The fuzziness
parameter can be set to AUTO, which results in the following maximum edit distances:



	
0 for strings of one or two characters



	
1 for strings of three, four, or five characters



	
2 for strings of more than five characters






Of course, you may find that an edit distance of 2 is still overkill, and
returns results that don’t appear to be related. You may get better results,
and better performance, with a maximum fuzziness of 1.

















Fuzzy Query


The fuzzy query is the fuzzy equivalent of
the term query. You will seldom use it directly yourself, but understanding
how it works will help you to use fuzziness in the higher-level match query.


To understand how it works, we will first index some documents:


POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Surprise me!"}
{ "index": { "_id": 2 }}
{ "text": "That was surprising."}
{ "index": { "_id": 3 }}
{ "text": "I wasn't surprised."}


Now we can run a fuzzy query for the term surprize:


GET /my_index/my_type/_search
{
  "query": {
    "fuzzy": {
      "text": "surprize"
    }
  }
}


The fuzzy query is a term-level query, so it doesn’t do any analysis.  It
takes a single term and finds all terms in the term dictionary that are
within the specified fuzziness. The default fuzziness is AUTO.


In our example, surprize is within an edit distance of 2 from both
surprise and surprised, so documents 1 and 3 match. We could reduce the
matches to just surprise with the following query:


GET /my_index/my_type/_search
{
  "query": {
    "fuzzy": {
      "text": {
        "value": "surprize",
        "fuzziness": 1
      }
    }
  }
}










Improving Performance


The fuzzy query works by taking the original term and building a
Levenshtein automaton—like a big graph representing all the strings
that are within the specified edit distance of the original string.


The fuzzy query then uses the automation to step efficiently through all of the terms
in the term dictionary to see if they match.  Once it has collected all of the
matching terms that exist in the term dictionary, it can compute the list of
matching documents.


Of course, depending on the type of data stored in the index, a fuzzy query
with an edit distance of 2 can match a very large number of terms and
perform very badly. Two parameters can be used to limit the
performance impact:


	prefix_length

	
The number of initial characters that will not be “fuzzified.”  Most
spelling errors occur toward the end of the word, not toward the beginning.
By using a prefix_length of 3, for example, you can signficantly reduce
the number of matching terms.



	max_expansions

	
If a fuzzy query expands to three or four fuzzy options, the new options may be
meaningful.  If it produces 1,000 options, they are essentially
meaningless.  Use max_expansions to limit the total number of options that
will be produced. The fuzzy query will collect matching terms until it
runs out of terms or reaches the max_expansions limit.




























Fuzzy match Query


The match query supports fuzzy matching out of the box:


GET /my_index/my_type/_search
{
  "query": {
    "match": {
      "text": {
        "query":     "SURPRIZE ME!",
        "fuzziness": "AUTO",
        "operator":  "and"
      }
    }
  }
}


The query string is first analyzed, to produce the terms [surprize, me], and
then each term is fuzzified using the specified fuzziness.


Similarly, the multi_match query also supports fuzziness, but only when
executing with type best_fields or most_fields:


GET /my_index/my_type/_search
{
  "query": {
    "multi_match": {
      "fields":  [ "text", "title" ],
      "query":     "SURPRIZE ME!",
      "fuzziness": "AUTO"
    }
  }
}


Both the match and multi_match queries  also support the prefix_length
and max_expansions parameters.

Tip
Fuzziness works only with the basic match and multi_match queries. It
doesn’t work with phrase matching, common terms, or cross_fields matches.


















Scoring Fuzziness


Users love fuzzy queries. They assume that these queries will somehow magically find
the right combination of proper spellings.  Unfortunately, the truth is
somewhat more prosaic.


Imagine that we have 1,000 documents containing “Schwarzenegger,” and just
one document with the misspelling “Schwarzeneger.”  According to the theory
of term frequency/inverse document frequency, the misspelling is
much more relevant than the correct spelling, because it appears in far fewer
documents!


In other words, if we were to treat fuzzy matches like any other match, we
would favor misspellings over correct spellings, which would make for grumpy
users.

Tip
Fuzzy matching should not be used for scoring purposes—only to widen
the net of matching terms in case there are misspellings.



By default, the match query gives all fuzzy matches the constant score of 1.
This is sufficient to add potential matches onto the end of the result list,
without interfering with the relevance scoring of nonfuzzy queries.

Tip

Fuzzy queries alone are much less useful than they initially appear.  They are
better used as part of a “bigger” feature, such as the search-as-you-type
completion suggester or the
did-you-mean phrase suggester.



















Phonetic Matching


In a last, desperate, attempt to match something, anything, we could resort to
searching for words that sound similar, even if their spelling differs.


Several algorithms exist for converting words into a phonetic
representation. The Soundex algorithm is
the granddaddy of them all, and most other phonetic algorithms are
improvements or specializations of Soundex, such as
Metaphone and
Double Metaphone
(which expands phonetic matching to languages other than English),
Caverphone for matching names in New
Zealand, the
Beider-Morse algorithm, which adopts the Soundex algorithm
for better matching of German and Yiddish names, and the
Kölner Phonetik for better
handling of German words.


The thing to take away from this list is that phonetic algorithms are fairly
crude, and very specific to the languages they were designed for, usually
either English or German.  This limits their usefulness.  Still, for certain
purposes, and in combination with other techniques, phonetic matching can be a
useful tool.


First, you will need to install the Phonetic Analysis plug-in from
http://bit.ly/1CreKJQ on every node
in the cluster, and restart each node.


Then, you can create a custom analyzer that uses one of the
phonetic token filters and try it out:


PUT /my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "dbl_metaphone": { [image: 1]
          "type":    "phonetic",
          "encoder": "double_metaphone"
        }
      },
      "analyzer": {
        "dbl_metaphone": {
          "tokenizer": "standard",
          "filter":    "dbl_metaphone" [image: 2]
        }
      }
    }
  }
}


	[image: 1]

	First, configure a custom phonetic token filter that uses the
double_metaphone encoder.


	[image: 2]

	Then use the custom token filter in a custom analyzer.





Now we can test it with the analyze API:


GET /my_index/_analyze?analyzer=dbl_metaphone
Smith Smythe


Each of Smith and Smythe produce two tokens in the same position:  SM0
and  XMT. Running John, Jon, and Johnnie through the analyzer will all
produce the two tokens JN and AN, while Jonathon results in the tokens
JN0N and ANTN.


The phonetic analyzer can be used just like any other analyzer. First map a
field to use it, and then index some data:


PUT /my_index/_mapping/my_type
{
  "properties": {
    "name": {
      "type": "string",
      "fields": {
        "phonetic": { [image: 1]
          "type":     "string",
          "analyzer": "dbl_metaphone"
        }
      }
    }
  }
}

PUT /my_index/my_type/1
{
  "name": "John Smith"
}

PUT /my_index/my_type/2
{
  "name": "Jonnie Smythe"
}


	[image: 1]

	The name.phonetic field uses the custom dbl_metaphone analyzer.





The match query can be used for searching:


GET /my_index/my_type/_search
{
  "query": {
    "match": {
      "name.phonetic": {
        "query": "Jahnnie Smeeth",
        "operator": "and"
      }
    }
  }
}


This query returns both documents, demonstrating just how coarse phonetic
matching is.  Scoring with a phonetic algorithm is pretty much worthless. The
purpose of phonetic matching is not to increase precision, but to increase
recall—to spread the net wide enough to catch any documents that might
possibly match.


It usually makes more sense to use phonetic algorithms when retrieving results
which will be consumed and post-processed by another computer, rather than by
human users.











High-Level Concepts

Chapter 25. High-Level Concepts



Like the query DSL, aggregations have a composable syntax: independent units
of functionality can be mixed and matched to provide the custom behavior that
you need. This means that there are only a few basic concepts to learn, but
nearly limitless combinations of those basic components.


To master aggregations, you need to understand only two main concepts:


	Buckets

	
Collections of documents that meet a criterion



	Metrics

	
Statistics calculated on the documents in a bucket






That’s it!  Every aggregation is simply a combination of one or more buckets
and zero or more metrics. To translate into rough SQL terms:


SELECT COUNT(color) [image: 1]
FROM table
GROUP BY color [image: 2]


	[image: 1]

	COUNT(color) is equivalent to a metric.


	[image: 2]

	GROUP BY color is equivalent to a bucket.





Buckets are conceptually similar to grouping in SQL, while metrics are similar
to COUNT(), SUM(), MAX(), and so forth.


Let’s dig into both of these concepts and see what they entail.








Buckets


A bucket is simply a collection of documents that meet a certain criteria:



	
An employee would land in either the male or female bucket.



	
The city of Albany would land in the New York state bucket.



	
The date 2014-10-28 would land within the October bucket.






As aggregations are executed, the values inside each document are evaluated to
determine whether they match a bucket’s criteria.  If they match, the document is placed
inside the bucket and the aggregation continues.


Buckets can also be nested inside other buckets, giving you a hierarchy or
conditional partitioning scheme.  For example, Cincinnati would be placed inside
the Ohio state bucket, and the entire Ohio bucket would be placed inside the
USA country bucket.


Elasticsearch has a variety of buckets, which allow you to
partition documents in many ways (by hour, by most-popular terms, by
age ranges, by geographical location, and more).  But fundamentally they all operate
on the same principle: partitioning documents based on a criteria.

















Metrics


Buckets allow us to partition documents into useful subsets, but ultimately what
we want is some kind of metric calculated on those documents in each bucket.
Bucketing is the means to an end: it provides a way to group documents in a way
that you can calculate interesting metrics.


Most metrics are simple mathematical operations (for example, min, mean, max, and sum)
that are calculated using the document values.  In practical terms, metrics allow
you to calculate quantities such as the average salary, or the maximum sale price,
or the 95th percentile for query latency.

















Combining the Two


An aggregation is a combination of buckets and metrics.  An aggregation may have
a single bucket, or a single metric, or one of each.  It may even have multiple
buckets nested inside other buckets. For example, we can partition documents by which country they belong to (a bucket), and
then calculate the average salary per country (a metric).


Because buckets can be nested, we can derive a much more complex aggregation:


	
Partition documents by country (bucket).



	
Then partition each country bucket by gender (bucket).



	
Then partition each gender bucket by age ranges (bucket).



	
Finally, calculate the average salary for each age range (metric)







This will give you the average salary per <country, gender, age> combination.  All in
one request and with one pass over the data!











Aggregation Test-Drive

Chapter 26. Aggregation Test-Drive



We could spend the next few pages defining the various aggregations
and their syntax, but aggregations are truly best learned by example.
Once you learn how to think about aggregations, and how to nest them appropriately,
the syntax is fairly trivial.

Note

A complete list of aggregation buckets and metrics can be found at the online
reference documentation.  We’ll cover many of them in this chapter, but glance
over it after finishing so you are familiar with the full range of capabilities.




So let’s just dive in and start with an example.  We are going to build some
aggregations that might be useful to a car dealer.  Our data will be about car
transactions: the car model, manufacturer, sale price, when it sold, and more.


First we will bulk-index some data to work with:


POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }


Now that we have some data, let’s construct our first aggregation.  A car dealer
may want to know which color car sells the best.  This is easily accomplished
using a simple aggregation.  We will do this using a terms bucket:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : { [image: 1]
        "colors" : { [image: 2]
            "terms" : {
              "field" : "color" [image: 3]
            }
        }
    }
}


	[image: 1]

	Aggregations are placed under the top-level aggs parameter (the longer aggregations
will also work if you prefer that).


	[image: 2]

	We then name the aggregation whatever we want: colors, in this example


	[image: 3]

	Finally, we define a single bucket of type terms.





Aggregations are executed in the context of search results, which means it is
just another top-level parameter in a search request (for example, using the /_search
endpoint).  Aggregations can be paired with queries, but we’ll tackle that later
in Chapter 29.

Note

You’ll notice that we used the count search_type.
Because we don’t care about search results—the aggregation totals—the
count search_type will be faster because it omits the fetch phase.




Next we define a name for our aggregation.  Naming is up to you;
the response will be labeled with the name you provide so that your application
can parse the results later.


Next we define the aggregation itself.  For this example, we are defining
a single terms bucket.  The terms bucket will dynamically create a new
bucket for every unique term it encounters.  Since we are telling it to use the
color field, the terms bucket will dynamically create a new bucket for each color.


Let’s execute that aggregation and take a look at the results:


{
...
   "hits": {
      "hits": [] [image: 1]
   },
   "aggregations": {
      "colors": { [image: 2]
         "buckets": [
            {
               "key": "red", [image: 3]
               "doc_count": 4 [image: 4]
            },
            {
               "key": "blue",
               "doc_count": 2
            },
            {
               "key": "green",
               "doc_count": 2
            }
         ]
      }
   }
}


	[image: 1]

	No search hits are returned because we used the search_type=count parameter


	[image: 2]

	Our colors aggregation is returned as part of the aggregations field.


	[image: 3]

	The key to each bucket corresponds to a unique term found in the color field.
It also always includes doc_count, which tells us the number of docs containing the term.


	[image: 4]

	The count of each bucket represents the number of documents with this color.





The response contains a list of buckets, each corresponding to a unique color
(for example, red or green). Each bucket also includes a count of the number of documents
that “fell into” that particular bucket.  For example, there are four red cars.


The preceding example is operating entirely in real time: if the documents are searchable,
they can be aggregated.  This means you can take the aggregation results and
pipe them straight into a graphing library to generate real-time dashboards.
As soon as you sell a silver car, your graphs would dynamically update to include
statistics about silver cars.


Voila!  Your first aggregation!









Adding a Metric to the Mix


The previous example told us the number of documents in each bucket, which is
useful.  But often, our applications require more-sophisticated metrics about
the documents. For example, what is the average price of cars in each bucket?


To get this information, we need to tell Elasticsearch which metrics to calculate,
and on which fields.  This requires nesting metrics inside the buckets.
Metrics will calculate mathematical statistics based on the values of documents
within a bucket.


Let’s go ahead and add an average metric to our car example:


GET /cars/transactions/_search?search_type=count
{
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": { [image: 1]
            "avg_price": { [image: 2]
               "avg": {
                  "field": "price" [image: 3]
               }
            }
         }
      }
   }
}


	[image: 1]

	We add a new aggs level to hold the metric.


	[image: 2]

	We then give the metric a name: avg_price.


	[image: 3]

	And finally, we define it as an avg metric over the price field.





As you can see, we took the previous example and tacked on a new aggs level.
This new aggregation level allows us to nest the avg metric inside the
terms bucket.  Effectively, this means we will generate an average for each
color.


Just like the colors example, we need to name our metric (avg_price) so we
can retrieve the values later.  Finally, we specify the metric itself (avg)
and what field we want the average to be calculated on (price):


{
...
   "aggregations": {
      "colors": {
         "buckets": [
            {
               "key": "red",
               "doc_count": 4,
               "avg_price": { [image: 1]
                  "value": 32500
               }
            },
            {
               "key": "blue",
               "doc_count": 2,
               "avg_price": {
                  "value": 20000
               }
            },
            {
               "key": "green",
               "doc_count": 2,
               "avg_price": {
                  "value": 21000
               }
            }
         ]
      }
   }
...
}


	[image: 1]

	New avg_price element in response





Although the response has changed minimally, the data we get out of it has grown
substantially.  Before, we knew there were four red cars.  Now we know that the
average price of red cars is $32,500.  This is something that you can plug directly
into reports or graphs.

















Buckets Inside Buckets


The true power of aggregations becomes apparent once you start playing with
different nesting schemes.  In the previous examples, we saw how you could nest
a metric inside a bucket, which is already quite powerful.


But the real exciting analytics come from nesting buckets inside other buckets.
This time, we want to find out the distribution of car manufacturers for each
color:


GET /cars/transactions/_search?search_type=count
{
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": {
            "avg_price": { [image: 1]
               "avg": {
                  "field": "price"
               }
            },
            "make": { [image: 2]
                "terms": {
                    "field": "make" [image: 3]
                }
            }
         }
      }
   }
}


	[image: 1]

	Notice that we can leave the previous avg_price metric in place.


	[image: 2]

	Another aggregation named make is added to the color bucket.


	[image: 3]

	This aggregation is a terms bucket and will generate unique buckets for
each car make.





A few interesting things happened here.  First, you’ll notice that the previous
avg_price metric is left entirely intact.  Each level of an aggregation can
have many metrics or buckets.  The avg_price metric tells us the average price
for each car color.  This is independent of other buckets and metrics that
are also being built.


This is important for your application, since there are often many related,
but entirely distinct, metrics that you need to collect.  Aggregations allow
you to collect all of them in a single pass over the data.


The other important thing to note is that the aggregation we added, make, is
a terms bucket (nested inside the colors terms bucket).  This means we will
generate a (color, make) tuple for every unique combination in your dataset.


Let’s take a look at the response (truncated for brevity, since it is now
growing quite long):


{
...
   "aggregations": {
      "colors": {
         "buckets": [
            {
               "key": "red",
               "doc_count": 4,
               "make": { [image: 1]
                  "buckets": [
                     {
                        "key": "honda", [image: 2]
                        "doc_count": 3
                     },
                     {
                        "key": "bmw",
                        "doc_count": 1
                     }
                  ]
               },
               "avg_price": {
                  "value": 32500 [image: 3]
               }
            },

...
}


	[image: 1]

	Our new aggregation is nested under each color bucket, as expected.


	[image: 2]

	We now see a breakdown of car makes for each color.


	[image: 3]

	Finally, you can see that our previous avg_price metric is still intact.





The response tells us the following:



	
There are four red cars.



	
The average price of a red car is $32,500.



	
Three of the red cars are made by Honda, and one is a BMW.





















One Final Modification


Just to drive the point home, let’s make one final modification to our example
before moving on to new topics.  Let’s add two metrics to calculate the min and
max price for each make:


GET /cars/transactions/_search?search_type=count
{
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": {
            "avg_price": { "avg": { "field": "price" }
            },
            "make" : {
                "terms" : {
                    "field" : "make"
                },
                "aggs" : { [image: 1]
                    "min_price" : { "min": { "field": "price"} }, [image: 2]
                    "max_price" : { "max": { "field": "price"} } [image: 3]
                }
            }
         }
      }
   }
}


	[image: 1]

	We need to add another aggs level for nesting.


	[image: 2]

	Then we include a min metric.


	[image: 3]

	And a max metric.





Which gives us the following output (again, truncated):


{
...
   "aggregations": {
      "colors": {
         "buckets": [
            {
               "key": "red",
               "doc_count": 4,
               "make": {
                  "buckets": [
                     {
                        "key": "honda",
                        "doc_count": 3,
                        "min_price": {
                           "value": 10000 [image: 1]
                        },
                        "max_price": {
                           "value": 20000 [image: 1]
                        }
                     },
                     {
                        "key": "bmw",
                        "doc_count": 1,
                        "min_price": {
                           "value": 80000
                        },
                        "max_price": {
                           "value": 80000
                        }
                     }
                  ]
               },
               "avg_price": {
                  "value": 32500
               }
            },
...


	[image: 1]

	The min and max metrics that we added now appear under each make





With those two buckets, we’ve expanded the information derived from this query
to include the following:



	
There are four red cars.



	
The average price of a red car is $32,500.



	
Three of the red cars are made by Honda, and one is a BMW.



	
The cheapest red Honda is $10,000.



	
The most expensive red Honda is $20,000.















Building Bar Charts

Chapter 27. Building Bar Charts



One of the exciting aspects of aggregations are how easily they are converted
into charts and graphs.  In this chapter, we are focusing
on various analytics that we can wring out of our example dataset.  We will also
demonstrate the types of charts aggregations can power.


The histogram bucket is particularly useful.  Histograms are essentially
bar charts, and if you’ve ever built a report or analytics dashboard, you
undoubtedly had a few bar charts in it. The histogram works by specifying an interval.  If we were histogramming sale
prices, you might specify an interval of 20,000.  This would create a new bucket
every $20,000.  Documents are then sorted into buckets.


For our dashboard, we want to know how many cars sold in each price range.  We
would also like to know the total revenue generated by that price bracket.  This is
calculated by summing the price of each car sold in that interval.


To do this, we use a histogram and a nested sum metric:


GET /cars/transactions/_search?search_type=count
{
   "aggs":{
      "price":{
         "histogram":{ [image: 1]
            "field": "price",
            "interval": 20000
         },
         "aggs":{
            "revenue": {
               "sum": { [image: 2]
                 "field" : "price"
               }
             }
         }
      }
   }
}


	[image: 1]

	The histogram bucket requires two parameters: a numeric field, and an
interval that defines the bucket size.


	[image: 2]

	A sum metric is nested inside each price range, which will show us the
total revenue for that bracket





As you can see, our query is built around the price aggregation, which contains
a histogram bucket.  This bucket requires a numeric field to calculate
buckets on, and an interval size.  The interval defines how “wide” each bucket
is.  An interval of 20000 means we will have the ranges [0-19999, 20000-39999, ...].


Next, we define a nested metric inside the histogram.  This is a sum metric, which
will sum up the price field from each document landing in that price range.
This gives us the revenue for each price range, so we can see if our business
makes more money from commodity or luxury cars.


And here is the response:


{
...
   "aggregations": {
      "price": {
         "buckets": [
            {
               "key": 0,
               "doc_count": 3,
               "revenue": {
                  "value": 37000
               }
            },
            {
               "key": 20000,
               "doc_count": 4,
               "revenue": {
                  "value": 95000
               }
            },
            {
               "key": 80000,
               "doc_count": 1,
               "revenue": {
                  "value": 80000
               }
            }
         ]
      }
   }
}


The response is fairly self-explanatory, but it should be noted that the
histogram keys correspond to the lower boundary of the interval.  The key 0
means 0-19,999, the key 20000 means 20,000-39,999, and so forth.

Note

You’ll notice that empty intervals, such as $40,000-60,000, is missing in the
response.  The histogram bucket omits these by default, since it could lead
to the unintended generation of potentially enormous output.


We’ll discuss how to include empty buckets in the next section, “Returning Empty Buckets”.




Graphically, you could represent the preceding data in the histogram shown in Figure 27-1.



[image: Sales and Revenue per price bracket]
Figure 27-1. Sales and Revenue per price bracket




Of course, you can build bar charts with any aggregation that emits categories
and statistics, not just the histogram bucket.  Let’s build a bar chart of
popular makes, and their average price, and then calculate the standard error
to add error bars on our chart.  This will use the terms bucket
and an extended_stats metric:


GET /cars/transactions/_search?search_type=count
{
  "aggs": {
    "makes": {
      "terms": {
        "field": "make",
        "size": 10
      },
      "aggs": {
        "stats": {
          "extended_stats": {
            "field": "price"
          }
        }
      }
    }
  }
}


This will return a list of makes (sorted by popularity) and a variety of statistics
about each.  In particular, we are interested in stats.avg, stats.count,
and stats.std_deviation.  Using this information, we can calculate the standard error:

std_err = std_deviation / count


This will allow us to build a chart like Figure 27-2.



[image: Average price of all makes, with error bars]
Figure 27-2. Average price of all makes, with error bars







Scoping Aggregations

Chapter 29. Scoping Aggregations



With all of the aggregation examples given so far, you may have noticed that we
omitted a query from the search request.  The entire request was
simply an aggregation.


Aggregations can be run at the same time as search requests, but you need to
understand a new concept: scope.  By default, aggregations operate in the same
scope as the query.  Put another way, aggregations are calculated on the set of
documents that match your query.


Let’s look at one of our first aggregation examples:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color"
            }
        }
    }
}


You can see that the aggregation is in isolation.  In reality, Elasticsearch
assumes “no query specified” is equivalent to “query all documents.” The preceding
query is internally translated as follows:


GET /cars/transactions/_search?search_type=count
{
    "query" : {
        "match_all" : {}
    },
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color"
            }
        }
    }
}


The aggregation always operates in the scope of the query, so an isolated
aggregation really operates in the scope of a match_all query—that is to say,
all documents.


Once armed with the knowledge of scoping, we can start to customize
aggregations even further.  All of our previous examples calculated statistics
about all of the data: top-selling cars, average price of all cars, most sales
per month, and so forth.


With scope, we can ask questions such as “How many colors are Ford cars are
available in?”  We do this by simply adding a query to the request (in this case
a match query):


GET /cars/transactions/_search  [image: 1]
{
    "query" : {
        "match" : {
            "make" : "ford"
        }
    },
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color"
            }
        }
    }
}


	[image: 1]

	We are omitting search_type=count so that search hits are returned too.





By omitting the search_type=count this time, we can see both the search
results and the aggregation results:


{
...
   "hits": {
      "total": 2,
      "max_score": 1.6931472,
      "hits": [
         {
            "_source": {
               "price": 25000,
               "color": "blue",
               "make": "ford",
               "sold": "2014-02-12"
            }
         },
         {
            "_source": {
               "price": 30000,
               "color": "green",
               "make": "ford",
               "sold": "2014-05-18"
            }
         }
      ]
   },
   "aggregations": {
      "colors": {
         "buckets": [
            {
               "key": "blue",
               "doc_count": 1
            },
            {
               "key": "green",
               "doc_count": 1
            }
         ]
      }
   }
}


This may seem trivial, but it is the key to advanced and powerful dashboards.
You can transform any static dashboard into a real-time data exploration device
by adding a search bar.  This allows the user to search for terms and see all
of the graphs (which are powered by aggregations, and thus scoped to the query)
update in real time.  Try that with Hadoop!








Global Bucket


You’ll often want your aggregation to be scoped to your query.  But sometimes
you’ll want to search for a subset of data, but aggregate across all of
your data.


For example, say you want to know the average price of Ford cars compared to the
average price of all cars. We can use a regular aggregation (scoped to the query)
to get the first piece of information.  The second piece of information can be
obtained by using a global bucket.


The global bucket will contain all of your documents, regardless of the query
scope; it bypasses the scope completely.  Because it is a bucket, you can nest
aggregations inside it as usual:


GET /cars/transactions/_search?search_type=count
{
    "query" : {
        "match" : {
            "make" : "ford"
        }
    },
    "aggs" : {
        "single_avg_price": {
            "avg" : { "field" : "price" } [image: 1]
        },
        "all": {
            "global" : {}, [image: 2]
            "aggs" : {
                "avg_price": {
                    "avg" : { "field" : "price" } [image: 3]
                }

            }
        }
    }
}


	[image: 1]

	This aggregation operates in the query scope (for example, all docs matching ford)


	[image: 2]

	The global bucket has no parameters.


	[image: 3]

	This aggregation operates on the all documents, regardless of the make.





The single_avg_price metric calculation is based on all documents that fall under the
query scope—all ford cars.  The avg_price metric is nested under a
global bucket, which means it ignores scoping entirely and calculates on
all the documents.  The average returned for that aggregation represents
the average price of all cars.


If you’ve made it this far in the book, you’ll recognize the mantra: use a filter
wherever you can.  The same applies to aggregations, and in the next chapter
we show you how to filter an aggregation instead of just limiting the query
scope.











Sorting Multivalue Buckets

Chapter 31. Sorting Multivalue Buckets



Multivalue buckets—the terms, histogram, and date_histogram—dynamically produce many buckets.  How does Elasticsearch decide the order that
these buckets are presented to the user?


By default, buckets are ordered by doc_count in descending order.  This is a
good default because often we want to find the documents that maximize some
criteria: price, population, frequency. But sometimes you’ll want to modify this sort order, and there are a few ways to
do it, depending on the bucket.








Intrinsic Sorts


These sort modes are intrinsic to the bucket: they operate on data that bucket
generates, such as doc_count.  They share the same syntax but differ slightly
depending on the bucket being used.


Let’s perform a terms aggregation but sort by doc_count, in ascending order:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color",
              "order": {
                "_count" : "asc" [image: 1]
              }
            }
        }
    }
}


	[image: 1]

	Using the _count keyword, we can sort by doc_count, in ascending order.





We introduce an order object into the aggregation, which allows us to sort on
one of several values:


	_count

	
Sort by document count.  Works with terms, histogram, date_histogram.



	_term

	
Sort by the string value of a term alphabetically.  Works only with terms.



	_key

	
Sort by the numeric value of each bucket’s key (conceptually similar to _term).
Works only with histogram and date_histogram.





















Sorting by a Metric


Often, you’ll find yourself wanting to sort based on a metric’s calculated value.
For our car sales analytics dashboard, we may want to build a bar chart of
sales by car color, but order the bars by the average price, ascending.


We can do this by adding a metric to our bucket, and then referencing that
metric from the order parameter:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color",
              "order": {
                "avg_price" : "asc" [image: 2]
              }
            },
            "aggs": {
                "avg_price": {
                    "avg": {"field": "price"} [image: 1]
                }
            }
        }
    }
}


	[image: 1]

	The average price is calculated for each bucket.


	[image: 2]

	Then the buckets are ordered by the calculated average in ascending order.





This lets you override the sort order with any metric, simply by referencing
the name of the metric.  Some metrics, however, emit multiple values.  The
extended_stats metric is a good example: it provides half a dozen individual
metrics.


If you want to sort on a multivalue metric, you just need to use the
dot-path to the metric of interest:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : {
        "colors" : {
            "terms" : {
              "field" : "color",
              "order": {
                "stats.variance" : "asc" [image: 1]
              }
            },
            "aggs": {
                "stats": {
                    "extended_stats": {"field": "price"}
                }
            }
        }
    }
}


	[image: 1]

	Using dot notation, we can sort on the metric we are interested in.





In this example we are sorting on the variance of each bucket, so that colors
with the least variance in price will appear before those that have more variance.

















Sorting Based on “Deep” Metrics


In the prior examples, the metric was a direct child of the bucket.  An average
price was calculated for each term.  It is possible to sort on deeper metrics,
which are grandchildren or great-grandchildren of the bucket—with some limitations.


You can define a path to a deeper, nested metric by using angle brackets (>), like
so: my_bucket>another_bucket>metric.


The caveat is that each nested bucket in the path must be a single-value bucket.
A filter bucket produces a single bucket:  all documents that match the
filtering criteria.  Multivalue buckets (such as terms) generate many
dynamic buckets, which makes it impossible to specify a deterministic path.


Currently, there are only three single-value buckets: filter, global, and reverse_nested.  As
a quick example, let’s build a histogram of car prices, but order the buckets
by the variance in price of red and green (but not blue) cars in each price range:


GET /cars/transactions/_search?search_type=count
{
    "aggs" : {
        "colors" : {
            "histogram" : {
              "field" : "price",
              "interval": 20000,
              "order": {
                "red_green_cars>stats.variance" : "asc" [image: 1]
              }
            },
            "aggs": {
                "red_green_cars": {
                    "filter": { "terms": {"color": ["red", "green"]}}, [image: 2]
                    "aggs": {
                        "stats": {"extended_stats": {"field" : "price"}} [image: 3]
                    }
                }
            }
        }
    }
}


	[image: 1]

	Sort the buckets generated by the histogram according to the variance of a nested metric.


	[image: 2]

	Because we are using a single-value filter, we can use nested sorting.


	[image: 3]

	Sort on the stats generated by this metric.





In this example, you can see that we are accessing a nested metric.  The stats
metric is a child of red_green_cars, which is in turn a child of colors.  To
sort on that metric, we define the path as red_green_cars>stats.variance.
This is allowed because the filter bucket is a single-value bucket.











Significant Terms

Chapter 33. Significant Terms



The significant_terms (SigTerms) aggregation is rather different from the rest of the
aggregations.  All the aggregations we have seen so far are essentially simple math
operations.  By combining the various building blocks, you can build sophisticated
aggregations and reports about your data.


significant_terms has a different agenda. To some, it may even look a bit like
machine learning.  The significant_terms aggregation finds uncommonly common terms
in your data-set.


What do we mean by uncommonly common?  These are terms that are statistically
unusual — data that appears more frequently than the background rate would
suggest.  These statistical anomalies are usually indicative of something
interesting in your data.


For example, imagine you are in charge of detecting and tracking down credit
card fraud.  Customers call and complain about unusual transactions appearing
on their credit card — their account has been compromised.  These transactions
are just symptoms of a larger problem.  Somewhere in the recent past,
a merchant has either knowingly stolen the customers’ credit card information,
or has unknowingly been compromised themselves.


Your job is to find the common point of compromise.  If you have 100 customers
complaining of unusual transactions, those customers likely share a single merchant—and it is this merchant that is likely the source of
blame.


Of course, it is a little more nuanced than just finding a merchant that all
customers share.  For example, many of the customers will have large merchants
like Amazon in their recent transaction history.  We can rule out Amazon, however,
since many uncompromised credit cards also have Amazon as a recent merchant.


This is an example of a commonly common merchant.  Everyone, whether compromised
or not, shares the merchant.  This makes it of little interest to us.


On the opposite end of the spectrum, you have tiny merchants such as the corner
drug store.  These are commonly uncommon—only one or two customers have
transactions from the merchant.  We can rule these out as well.  Since all of
the compromised cards did not interact with the merchant, we can be sure it was
not to blame for the security breach.


What we want are uncommonly common merchants.  These are merchants that every
compromised card shares, but that are not well represented in the background
noise of uncompromised cards.  These merchants are statistical anomalies; they
appear more frequently than they should.  It is highly likely that these
uncommonly common merchants are to blame.


significant_terms aggregation does just this.  It analyzes your data and finds
terms that appear with a frequency that is statistically anomalous compared
to the background data.


What you do with this statistical anomaly depends on the data.  With the credit
card data, you might be looking for fraud.  With ecommerce, you might be looking
for an unidentified demographic so you can market to them more efficiently.
If you are analyzing logs, you might find one server that throws a certain type of error
more often than it should.  The applications of significant_terms is nearly endless.








significant_terms Demo


Because the significant_terms aggregation works by analyzing
statistics, you need to have a certain threshold of data for it to become effective.
That means we won’t be able to index a small amount of example data for the demo.


Instead, we have a pre-prepared dataset of around 80,000 documents.  This is
saved as a snapshot (for more information about snapshots and restore, see
“Backing Up Your Cluster”) in our public demo repository.  You can “restore”
this dataset into your cluster by using these commands:


PUT /_snapshot/sigterms [image: 1]
{
    "type": "url",
    "settings": {
        "url": "http://download.elasticsearch.org/definitiveguide/sigterms_demo/"
    }
}

GET /_snapshot/sigterms/_all [image: 2]

POST /_snapshot/sigterms/snapshot/_restore [image: 3]

GET /mlmovies,mlratings/_recovery [image: 4]


	[image: 1]

	Register a new read-only URL repository pointing at the demo snapshot


	[image: 2]

	(Optional) Inspect the repository to learn details about available snapshots


	[image: 3]

	Begin the Restore process.  This will download two indices into your cluster: mlmovies
and mlratings


	[image: 4]

	(Optional) Monitor the Restore process using the Recovery API




Note
The dataset is around 50 MB and may take some time to download.



In this demo, we are going to look at movie ratings by users of MovieLens.  At
MovieLens, users make movie recommendations so other users can find new
movies to watch.  For this demo, we are going to recommend movies by using significant_terms
based on an input movie.


Let’s take a look at some sample data, to get a feel for what we are working with.
There are two indices in this dataset, mlmovies and mlratings.  Let’s look
at mlmovies first:


GET mlmovies/_search [image: 1]

{
   "took": 4,
   "timed_out": false,
   "_shards": {...},
   "hits": {
      "total": 10681,
      "max_score": 1,
      "hits": [
         {
            "_index": "mlmovies",
            "_type": "mlmovie",
            "_id": "2",
            "_score": 1,
            "_source": {
               "offset": 2,
               "bytes": 34,
               "title": "Jumanji (1995)"
            }
         },
         ....


	[image: 1]

	Execute a search without a query, so that we can see a random sampling of docs.





Each document in mlmovies represents a single movie.  The two important pieces
of data are the _id of the movie and the title of the movie.  You can ignore
offset and bytes; they are artifacts of the process used to extract this
data from the original CSV files. There are 10,681 movies in this dataset.


Now let’s look at mlratings:


GET mlratings/_search

{
   "took": 3,
   "timed_out": false,
   "_shards": {...},
   "hits": {
      "total": 69796,
      "max_score": 1,
      "hits": [
         {
            "_index": "mlratings",
            "_type": "mlrating",
            "_id": "00IC-2jDQFiQkpD6vhbFYA",
            "_score": 1,
            "_source": {
               "offset": 1,
               "bytes": 108,
               "movie": [122,185,231,292,
                  316,329,355,356,362,364,370,377,420,
                  466,480,520,539,586,588,589,594,616
               ],
               "user": 1
            }
         },
         ...


Here we can see the recommendations of individual users.  Each document represents
a single user, denoted by the user ID field.  The movie field holds a list
of movies that this user watched and recommended.










Recommending Based on Popularity


The first strategy we could take is trying to recommend movies based on popularity.
Given a particular movie, we find all users who recommended that movie.  Then
we aggregate all their recommendations and take the top five most popular.


We can express that easily with a terms aggregation and some filtering.  Let’s
look at Talladega Nights, a comedy about NASCAR racing starring
Will Ferrell.  Ideally, our recommender should find other comedies in a similar
style (and more than likely also starring Will Ferrell).


First we need to find the Talladega Nights ID:


GET mlmovies/_search
{
  "query": {
    "match": {
      "title": "Talladega Nights"
    }
  }
}

    ...
    "hits": [
     {
        "_index": "mlmovies",
        "_type": "mlmovie",
        "_id": "46970", [image: 1]
        "_score": 3.658795,
        "_source": {
           "offset": 9575,
           "bytes": 74,
           "title": "Talladega Nights: The Ballad of Ricky Bobby (2006)"
        }
     },
    ...


	[image: 1]

	Talladega Nights is ID 46970.





Armed with the ID, we can now filter the ratings and apply our terms aggregation
to find the most popular movies from people who also like Talladega Nights:


GET mlratings/_search?search_type=count [image: 1]
{
  "query": {
    "filtered": {
      "filter": {
        "term": {
          "movie": 46970 [image: 2]
        }
      }
    }
  },
  "aggs": {
    "most_popular": {
      "terms": {
        "field": "movie", [image: 3]
        "size": 6
      }
    }
  }
}


	[image: 1]

	We execute our query on mlratings this time, and specify search_type=count
since we are interested only in the aggregation results.


	[image: 2]

	Apply a filter on the ID corresponding to Talladega Nights.


	[image: 3]

	Finally, find the most popular movies by using a terms bucket.





We perform the search on the mlratings index, and apply a filter for the ID of
Talladega Nights.  Since aggregations operate on query scope, this will
effectively filter the aggregation results to only the users who recommended
Talladega Nights. Finally, we execute a terms aggregation to bucket the most
popular movies.  We are requesting the top six results, since it is likely
that Talladega Nights itself will be returned as a hit (and we don’t want
to recommend the same movie).


The results come back like so:


{
...
   "aggregations": {
      "most_popular": {
         "buckets": [
            {
               "key": 46970,
               "key_as_string": "46970",
               "doc_count": 271
            },
            {
               "key": 2571,
               "key_as_string": "2571",
               "doc_count": 197
            },
            {
               "key": 318,
               "key_as_string": "318",
               "doc_count": 196
            },
            {
               "key": 296,
               "key_as_string": "296",
               "doc_count": 183
            },
            {
               "key": 2959,
               "key_as_string": "2959",
               "doc_count": 183
            },
            {
               "key": 260,
               "key_as_string": "260",
               "doc_count": 90
            }
         ]
      }
   }
...


We need to correlate these back to their original titles, which can be done
with a simple filtered query:


GET mlmovies/_search
{
  "query": {
    "filtered": {
      "filter": {
        "ids": {
          "values": [2571,318,296,2959,260]
        }
      }
    }
  }
}


And finally, we end up with the following list:


	
Matrix, The



	
Shawshank Redemption



	
Pulp Fiction



	
Fight Club



	
Star Wars Episode IV: A New Hope







OK—well that is certainly a good list!  I like all of those movies.  But that’s
the problem: most everyone likes that list.  Those movies are universally
well-liked, which means they are popular on everyone’s recommendations.  The
list is basically a recommendation of popular movies, not recommendations related
to Talladega Nights.


This is easily verified by running the aggregation again, but without the filter
on Talladega Nights.  This will give a top-five most popular movie list:


GET mlratings/_search?search_type=count
{
  "aggs": {
    "most_popular": {
      "terms": {
        "field": "movie",
        "size": 5
      }
    }
  }
}


This returns a list that is very similar:


	
Shawshank Redemption



	
Silence of the Lambs, The



	
Pulp Fiction



	
Forrest Gump



	
Star Wars Episode IV: A New Hope







Clearly, just checking the most popular movies is not sufficient to build a good,
discriminating recommender.

















Recommending Based on Statistics


Now that the scene is set, let’s try using significant_terms.  significant_terms will analyze
the group of people who enjoy Talladega Nights (the foreground group) and
determine what movies are most popular.  It will then construct a list of
popular films for everyone (the background group) and compare the two.


The statistical anomalies will be the movies that are over-represented in the
foreground compared to the background.  Theoretically, this should be a list
of comedies, since people who enjoy Will Ferrell comedies will recommend them
at a higher rate than the background population of people.


Let’s give it a shot:


GET mlratings/_search?search_type=count
{
  "query": {
    "filtered": {
      "filter": {
        "term": {
          "movie": 46970
        }
      }
    }
  },
  "aggs": {
    "most_sig": {
      "significant_terms": { [image: 1]
        "field": "movie",
        "size": 6
      }
    }
  }
}


	[image: 1]

	The setup is nearly identical — we just use significant_terms instead of
terms.





As you can see, the query is nearly the same.  We filter for users who
liked Talladega Nights; this forms the foreground group.  By default,
significant_terms will use the entire index as the background, so we don’t need to do
anything special.


The results come back as a list of buckets similar to terms, but with some
extra metadata:


...
   "aggregations": {
      "most_sig": {
         "doc_count": 271, [image: 1]
         "buckets": [
            {
               "key": 46970,
               "key_as_string": "46970",
               "doc_count": 271,
               "score": 256.549815498155,
               "bg_count": 271
            },
            {
               "key": 52245, [image: 2]
               "key_as_string": "52245",
               "doc_count": 59, [image: 3]
               "score": 17.66462367106966,
               "bg_count": 185 [image: 4]
            },
            {
               "key": 8641,
               "key_as_string": "8641",
               "doc_count": 107,
               "score": 13.884387742677438,
               "bg_count": 762
            },
            {
               "key": 58156,
               "key_as_string": "58156",
               "doc_count": 17,
               "score": 9.746428133759462,
               "bg_count": 28
            },
            {
               "key": 52973,
               "key_as_string": "52973",
               "doc_count": 95,
               "score": 9.65770100311672,
               "bg_count": 857
            },
            {
               "key": 35836,
               "key_as_string": "35836",
               "doc_count": 128,
               "score": 9.199001116457955,
               "bg_count": 1610
            }
         ]
 ...


	[image: 1]

	The top-level doc_count shows the number of docs in the foreground group.


	[image: 2]

	Each bucket lists the key (for example, movie ID) being aggregated.


	[image: 3]

	A doc_count for that bucket.


	[image: 4]

	And a background count, which shows the rate at which this value appears in
the entire background.





You can see that the first bucket we get back is Talladega Nights.  It is
found in all 271 documents, which is not surprising.  Let’s look at the next bucket:
key 52245.


This ID corresponds to Blades of Glory, a comedy about male figure skating
that also stars Will Ferrell.  We can see that it was recommended 59 times by
the people who also liked Talladega Nights.  This means that 21% of the foreground
group recommended Blades of Glory (59 / 271 = 0.2177).


In contrast, Blades of Glory was recommended only 185 times in the entire dataset,
which equates to a mere 0.26% (185 / 69796 = 0.00265).  Blades of Glory is therefore
a statistical anomaly: it is uncommonly common in the group of people who
like Talladega Nights.  We just found a good recommendation!


If we look at the entire list, they are all comedies that would fit as good
recommendations (many of which also star Will Ferrell):


	
Blades of Glory



	
Anchorman: The Legend of Ron Burgundy



	
Semi-Pro



	
Knocked Up



	
40-Year-Old Virgin, The







This is just one example of the power of significant_terms. Once you start using
significant_terms, you find many situations where you don’t want the most popular—you want the most uncommonly common.  This simple aggregation can uncover some
surprisingly sophisticated trends in your data.


















Closing Thoughts

Chapter 35. Closing Thoughts



This section covered a lot of ground, and a lot of deeply technical issues.
Aggregations bring a power and flexibility to Elasticsearch that is hard to
overstate. The ability to nest buckets and metrics, to quickly approximate
cardinality and percentiles, to find statistical anomalies in your data, all
while operating on near-real-time data and in parallel to full-text search—these are game-changers to many organizations.


It is a feature that, once you start using it, you’ll find dozens
of other candidate uses.  Real-time reporting and analytics is central to many
 organizations (be it over business intelligence or server logs).


But with great power comes great responsibility, and for Elasticsearch that often
means proper memory stewardship. Memory is often the limiting factor in
Elasticsearch deployments, particularly those that heavily utilize aggregations.
Because aggregation data is loaded to fielddata—and this is an in-memory data
structure—managing efficient memory usage is important.


The management of this memory can take several forms, depending on your
particular use-case:



	
At a data level, by making sure you analyze (or not_analyze) your data appropriately
so that it is memory-friendly



	
During indexing, by configuring heavy fields to use disk-based doc values instead
of in-memory fielddata



	
At search time, by utilizing approximate aggregations and data filtering



	
At a node level, by setting hard memory and dynamic circuit-breaker limits



	
At an operations level, by monitoring memory usage and controlling slow garbage-collection cycles, potentially by adding more nodes to the cluster






Most deployments will use one or more of the preceding methods.  The exact combination
is highly dependent on your particular environment.  Some organizations need
blisteringly fast responses and opt to simply add more nodes.  Other organizations
are limited by budget and choose doc values and approximate aggregations.


Whatever the path you take, it is important to assess the available options and
create both a short- and long-term plan.  Decide how your memory situation exists
today and what (if anything) needs to be done.  Then decide what will happen in
six months or one year as your data grows. What methods will you use to continue
scaling?


It is better to plan out these life cycles of your cluster ahead of time, rather
than panicking at 3 a.m. because your cluster is at 90% heap utilization.


Geolocation

Part V. Geolocation



Gone are the days when we wander around a city with paper maps. Thanks to
smartphones, we now know exactly where we are all the time, and we expect
websites to use that information.  I’m not interested in restaurants in
Greater London—I want to know about restaurants within a 5-minute walk of my
current location.


But geolocation is only one part of the puzzle.  The beauty of Elasticsearch
is that it allows you to combine geolocation with full-text search, structured
search, and analytics.


For instance: show me restaurants that mention vitello tonnato, are within a 5-minute walk, and are open at 11 p.m., and then rank them by a combination of user
rating, distance, and price. Another example: show me a map of vacation rental
properties available in August throughout the city, and calculate the average
price per zone.


Elasticsearch offers two ways of representing geolocations: latitude-longitude
points using the geo_point field type, and complex shapes defined in
GeoJSON, using the geo_shape field
type.


Geo-points allow you to find points within a certain distance of another
point, to calculate distances between two points for sorting or relevance
scoring, or to aggregate into a grid to display on a map.  Geo-shapes, on the
other hand, are used purely for filtering.  They can be used to decide whether
two shapes overlap, or whether one shape completely contains other
shapes.
































































Geo-Points

Chapter 36. Geo-Points



A geo-point is a single latitude/longitude point on the Earth’s surface. Geo-points
can be used to calculate distance from a point, to determine whether a point
falls within a bounding box, or in aggregations.


Geo-points cannot be automatically detected with
dynamic mapping. Instead, geo_point fields should be
mapped explicitly:


PUT /attractions
{
  "mappings": {
    "restaurant": {
      "properties": {
        "name": {
          "type": "string"
        },
        "location": {
          "type": "geo_point"
        }
      }
    }
  }
}








Lat/Lon Formats


With the location field defined as a geo_point, we can proceed to index
documents containing latitude/longitude pairs, which can be formatted as
strings, arrays, or objects:


PUT /attractions/restaurant/1
{
  "name":     "Chipotle Mexican Grill",
  "location": "40.715, -74.011" [image: 1]
}

PUT /attractions/restaurant/2
{
  "name":     "Pala Pizza",
  "location": { [image: 2]
    "lat":     40.722,
    "lon":    -73.989
  }
}

PUT /attractions/restaurant/3
{
  "name":     "Mini Munchies Pizza",
  "location": [ -73.983, 40.719 ] [image: 3]
}


	[image: 1]

	A string representation, with "lat,lon".


	[image: 2]

	An object representation with lat and lon explicitly named.


	[image: 3]

	An array representation with [lon,lat].




Caution

Everybody gets caught at least once: string geo-points are
"latitude,longitude", while array geo-points are [longitude,latitude]—the opposite order!


Originally, both strings and arrays in Elasticsearch used latitude followed by
longitude. However, it was decided early on to switch the order for arrays in
order to conform with GeoJSON.


The result is a bear trap that captures all unsuspecting users on their
journey to full geolocation nirvana.



















Filtering by Geo-Point


Four geo-point filters can be used to include or exclude documents by
geolocation:


	geo_bounding_box

	
Find geo-points that fall within the specified rectangle.



	geo_distance

	
Find geo-points within the specified distance of a central point.



	geo_distance_range

	
Find geo-points within a specified minimum and maximum distance from a
central point.



	geo_polygon

	
Find geo-points that fall within the specified polygon. This filter is
very expensive. If you find yourself wanting to use it, you should be
looking at geo-shapes instead.






All of these filters work in a similar way: the lat/lon values are loaded
into memory for all documents in the index, not just the documents that
match the query (see “Fielddata”). Each filter performs a slightly
different calculation to check whether a point falls into the containing area.

Tip

Geo-filters are expensive — they should be used on as few documents as
possible. First remove as many documents as you can with cheaper filters, like
term or range filters, and apply the geo-filters last.


The bool filter will do this for you automatically. First it
applies any bitset-based filters (see “All About Caching”) to exclude as many
documents as it can as cheaply as possible.  Then it applies the more
expensive geo or script filters to each remaining document in turn.



















geo_bounding_box Filter


This is by far the most efficient geo-filter because its calculation is very
simple.  You provide it with the top, bottom, left, and right
coordinates of a rectangle, and all it does is compare the latitude with the
left and right coordinates, and the longitude with the top and bottom
coordinates:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "location": { [image: 1]
            "top_left": {
              "lat":  40.8,
              "lon": -74.0
            },
            "bottom_right": {
              "lat":  40.7,
              "lon": -73.0
            }
          }
        }
      }
    }
  }
}


	[image: 1]

	These coordinates can also be specified as bottom_left and top_right.













Optimizing Bounding Boxes


The geo_bounding_box is the one geo-filter that doesn’t require all
geo-points to be loaded into memory.  Because all it has to do is check
whether the lat and lon values fall within the specified ranges, it can
use the inverted index to do a glorified range filter.


To use this optimization, the geo_point field must be mapped to
index the lat and lon values separately:


PUT /attractions
{
  "mappings": {
    "restaurant": {
      "properties": {
        "name": {
          "type": "string"
        },
        "location": {
          "type":    "geo_point",
          "lat_lon": true [image: 1]
        }
      }
    }
  }
}


	[image: 1]

	The location.lat and location.lon fields will be indexed separately.
These fields can be used for searching, but their values cannot be retrieved.





Now, when we run our query, we have to tell Elasticsearch to use the indexed
lat and lon values:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "type":    "indexed", [image: 1]
          "location": {
            "top_left": {
              "lat":  40.8,
              "lon": -74.0
            },
            "bottom_right": {
              "lat":  40.7,
              "lon":  -73.0
            }
          }
        }
      }
    }
  }
}


	[image: 1]

	Setting the type parameter to indexed (instead of the default
memory) tells Elasticsearch to use the inverted index for this filter.




Caution
While a geo_point field can contain multiple geo-points, the
lat_lon optimization can be used only on fields that contain a single
geo-point.

























geo_distance Filter


The geo_distance filter draws a circle around the specified location and
finds all documents that have a geo-point within that circle:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_distance": {
          "distance": "1km", [image: 1]
          "location": { [image: 2]
            "lat":  40.715,
            "lon": -73.988
          }
        }
      }
    }
  }
}


	[image: 1]

	Find all location fields within 1km of the specified point.
See Distance Units for
a list of the accepted units.


	[image: 2]

	The central point can be specified as a string, an array, or (as in this
example) an object. See “Lat/Lon Formats”.





A geo-distance calculation is expensive.  To optimize performance,
Elasticsearch draws a box around the circle and first uses the less expensive
bounding-box calculation to exclude as many documents as it can.  It runs
the geo-distance calculation on only those points that fall within the bounding
box.

Tip
Do your users really require an accurate circular filter to be applied to
their results? Using a rectangular bounding box is much
more efficient than geo-distance and will usually serve their purposes just as
well.











Faster Geo-Distance Calculations


The distance between two points can be calculated using algorithms,
which trade performance for accuracy:


	arc

	
The slowest but most accurate is the arc calculation, which treats the world
as a sphere.  Accuracy is still limited because the world isn’t really a sphere.



	plane

	
The plane calculation, which treats the world as if it were flat, is faster
but less accurate. It is most accurate at the equator and becomes less
accurate toward the poles.



	sloppy_arc

	
So called because it uses the SloppyMath Lucene class to trade accuracy for speed,
the sloppy_arc calculation uses the
Haversine formula to calculate
distance. It is four to five times as fast as arc, and distances are 99.9% accurate.
This is the default calculation.






You can specify a different calculation as follows:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_distance": {
          "distance":      "1km",
          "distance_type": "plane", [image: 1]
          "location": {
            "lat":  40.715,
            "lon": -73.988
          }
        }
      }
    }
  }
}


	[image: 1]

	Use the faster but less accurate plane calculation.




Tip
Will your users really care if a restaurant is a few meters outside their specified radius? While some geo applications require great accuracy,
less-accurate but faster calculations will suit the majority of use cases just
fine.


















geo_distance_range Filter


The only difference between the geo_distance and geo_distance_range
filters is that the latter has a doughnut shape and excludes documents within
the central hole.


Instead of specifying a single distance from the center, you specify a
minimum distance (with gt or gte)  and maximum distance (with lt or
lte), just like a range filter:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_distance_range": {
          "gte":    "1km", [image: 1]
          "lt":     "2km", [image: 1]
          "location": {
            "lat":  40.715,
            "lon": -73.988
          }
        }
      }
    }
  }
}


	[image: 1]

	Matches locations that are at least 1km from the center, and less than
2km from the center.



























Caching geo-filters


The results of geo-filters are not cached by default, for two reasons:



	
Geo-filters are usually used to find entities that are near to a user’s
current location. The problem is that users move, and no two users
are in exactly the same location.  A cached filter would have little
chance of being reused.



	
Filters are cached as bitsets that represent all documents in a
segment.  Imagine that our query excludes all
documents but one in a particular segment.  An uncached geo-filter just
needs to check the one remaining document, but a cached geo-filter would
need to check all of the documents in the segment.






That said, caching can be used to good effect with geo-filters.  Imagine that
your index contains restaurants from all over the United States. A user in New
York is not interested in restaurants in San Francisco.  We can treat New York
as a hot spot and draw a big bounding box around the city and neighboring
areas.


This geo_bounding_box filter can be cached and reused whenever we have a
user within the city limits of New York.  It will exclude all restaurants
from the rest of the country. We can then use an uncached, more specific
geo_bounding_box or geo_distance filter to narrow the remaining results to those that are close to the user:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "bool": {
          "must": [
            {
              "geo_bounding_box": {
                "type": "indexed",
                "_cache": true, [image: 1]
                "location": {
                  "top_left": {
                    "lat":  40,8,
                    "lon": -74.1
                  },
                  "bottom_right": {
                    "lat":  40.4,
                    "lon": -73.7
                  }
                }
              }
            },
            {
              "geo_distance": { [image: 2]
                "distance": "1km",
                "location": {
                  "lat":  40.715,
                  "lon": -73.988
                }
              }
            }
          ]
        }
      }
    }
  }
}


	[image: 1]

	The cached bounding box filter reduces all results down to those in the
greater New York area.


	[image: 2]

	The more costly geo_distance filter narrows the results to those
within 1km of the user.




















Reducing Memory Usage


Each lat/lon pair requires 16 bytes of memory, memory that is in short
supply. It needs this much memory in order to provide very accurate results.
But as we have commented before, such exacting precision is seldom required.


You can reduce the amount of memory that is used by switching to a
compressed fielddata format and by specifying how precise you need your geo-points to be.  Even reducing precision to 1mm reduces memory usage by a
third. A more realistic setting of 3m reduces usage by 62%, and 1km saves
a massive 75%!


This setting can be changed on a live index with the update-mapping API:


POST /attractions/_mapping/restaurant
{
  "location": {
    "type": "geo_point",
    "fielddata": {
      "format":    "compressed",
      "precision": "1km" [image: 1]
    }
  }
}


	[image: 1]

	Each lat/lon pair will require only 4 bytes, instead of 16.





Alternatively, you can avoid using memory for geo-points altogether, either by
using the technique described in “Optimizing Bounding Boxes”, or by storing
geo-points as doc values:


PUT /attractions
{
  "mappings": {
    "restaurant": {
      "properties": {
        "name": {
          "type": "string"
        },
        "location": {
          "type":       "geo_point",
          "doc_values": true [image: 1]
        }
      }
    }
  }
}


	[image: 1]

	Geo-points will not be loaded into memory, but instead stored on disk.





Mapping a geo-point to use doc values can be done only when the field is first
created. There is a small performance cost in using doc values instead of
fielddata, but with memory in such short supply, it is often worth doing.

















Sorting by Distance


Search results can be sorted by distance from a point:

Tip
While you can sort by distance, “Scoring by Distance” is usually a
better solution.



GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "type":       "indexed",
          "location": {
            "top_left": {
              "lat":  40,8,
              "lon": -74.0
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.0
            }
          }
        }
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": { [image: 1]
          "lat":  40.715,
          "lon": -73.998
        },
        "order":         "asc",
        "unit":          "km", [image: 2]
        "distance_type": "plane" [image: 3]
      }
    }
  ]
}


	[image: 1]

	Calculate the distance between the specified lat/lon point and the
geo-point in the location field of each document.


	[image: 2]

	Return the distance in km in the sort keys for each result.


	[image: 3]

	Use the faster but less accurate plane calculation.





You may ask yourself: why do we specify the distance unit? For sorting, it
doesn’t matter whether we compare distances in miles, kilometers, or light
years.  The reason is that the actual value used for sorting is returned with
each result, in the sort element:


...
  "hits": [
     {
        "_index": "attractions",
        "_type": "restaurant",
        "_id": "2",
        "_score": null,
        "_source": {
           "name": "New Malaysia",
           "location": {
              "lat": 40.715,
              "lon": -73.997
           }
        },
        "sort": [
           0.08425653647614346 [image: 1]
        ]
     },
...


	[image: 1]

	This restaurant is 0.084km from the location we specified.





You can set the unit to return these values in whatever form makes sense for
your application.

Tip

Geo-distance sorting can also handle multiple geo-points, both in the document
and in the sort parameters.  Use the sort_mode to specify whether it should
use the min, max, or avg distance between each combination of locations.
This can be used to return “friends nearest to my work and home locations.”












Scoring by Distance


It may be that distance is the only important factor in deciding the order in
which results are returned, but more frequently we need to combine distance
with other factors, such as full-text relevance, popularity, and price.


In these situations, we should reach for the
function_score query that allows us to blend all
of these factors into an overall score.  See “The Closer, The Better” for an
example that uses geo-distance to influence scoring.


The other drawback of sorting by distance is performance: the distance has to
be calculated for all matching documents.  The function_score query, on the
other hand, can be executed during the rescore phase,
limiting the number of calculations to just the top n results.


















Geo-aggregations

Chapter 38. Geo-aggregations



Although filtering or scoring results by geolocation is useful, it is often more
useful to be able to present information to the user on a map. A search may
return way too many results to be able to display each geo-point individually,
but geo-aggregations can be used to cluster geo-points into more manageable
buckets.


Three aggregations work with fields of type geo_point:


	geo_distance

	
Groups documents into concentric circles around a central point.



	geohash_grid

	
Groups documents by geohash cell, for display on a map.



	geo_bounds

	
Returns the lat/lon coordinates of a bounding box that would
encompass all of the geo-points. This is useful for choosing
the correct zoom level when displaying a map.












geo_distance Aggregation


The geo_distance agg is useful for searches such as
to “find all pizza restaurants within 1km of me.” The search results
should, indeed, be limited to the 1km radius specified by the user, but we can
add “another result found within 2km”:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "query": {
        "match": { [image: 1]
          "name": "pizza"
        }
      },
      "filter": {
        "geo_bounding_box": {
          "location": { [image: 2]
            "top_left": {
              "lat":  40,8,
              "lon": -74.1
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.7
            }
          }
        }
      }
    }
  },
  "aggs": {
    "per_ring": {
      "geo_distance": { [image: 3]
        "field":    "location",
        "unit":     "km",
        "origin": {
          "lat":    40.712,
          "lon":   -73.988
        },
        "ranges": [
          { "from": 0, "to": 1 },
          { "from": 1, "to": 2 }
        ]
      }
    }
  },
  "post_filter": { [image: 4]
    "geo_distance": {
      "distance":   "1km",
      "location": {
        "lat":      40.712,
        "lon":     -73.988
      }
    }
  }
}


	[image: 1]

	The main query looks for restaurants with pizza in the name.


	[image: 2]

	The bounding box filters these results down to just those in
the greater New York area.


	[image: 3]

	The geo_distance agg counts the number of results within
1km of the user, and between 1km and 2km from the user.


	[image: 4]

	Finally, the post_filter reduces the search results to just
those restaurants within 1km of the user.





The response from the preceding request is as follows:


"hits": {
  "total":     1,
  "max_score": 0.15342641,
  "hits": [ [image: 1]
     {
        "_index": "attractions",
        "_type":  "restaurant",
        "_id":    "3",
        "_score": 0.15342641,
        "_source": {
           "name": "Mini Munchies Pizza",
           "location": [
              -73.983,
              40.719
           ]
        }
     }
  ]
},
"aggregations": {
  "per_ring": { [image: 2]
     "buckets": [
        {
           "key":       "*-1.0",
           "from":      0,
           "to":        1,
           "doc_count": 1
        },
        {
           "key":       "1.0-2.0",
           "from":      1,
           "to":        2,
           "doc_count": 1
        }
     ]
  }
}


	[image: 1]

	The post_filter has reduced the search hits to just the single
pizza restaurant within 1km of the user.


	[image: 2]

	The aggregation includes the search result plus the other pizza
restaurant within 2km of the user.





In this example, we have counted the number of restaurants that fall
into each concentric ring.  Of course, we could nest subaggregations under
the per_rings aggregation to calculate the average price per ring, the
maximium popularity, and more.

















geohash_grid Aggregation


The number of results returned by a query may be far too many to display each
geo-point individually on a map. The geohash_grid aggregation buckets nearby
geo-points together by calculating the geohash for each point, at the level of
precision that you define.


The result is a grid of cells—one cell per geohash—that can be
displayed on a map. By changing the precision of the geohash, you can
summarize information across the whole world, by country, or by city block.


The aggregation is sparse—it returns only cells that contain documents.
If your geohashes are too precise and too many buckets are generated, it will
return, by default, the 10,000 most populous cells—those containing the
most documents. However, it still needs to generate all the buckets in
order to figure out which are the most populous 10,000.  You need to control
the number of buckets generated by doing the following:


	
Limit the result with a geo_bounding_box filter.



	
Choose an appropriate precision for the size of your bounding box.







GET /attractions/restaurant/_search?search_type=count
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "location": { [image: 1]
            "top_left": {
              "lat":  40,8,
              "lon": -74.1
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.7
            }
          }
        }
      }
    }
  },
  "aggs": {
    "new_york": {
      "geohash_grid": { [image: 2]
        "field":     "location",
        "precision": 5
      }
    }
  }
}
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	The bounding box limits the scope of the search to the greater New York area.


	[image: 2]

	Geohashes of precision 5 are approximately 5km x 5km.





Geohashes with precision 5 measure about 25km2 each, so 10,000 cells at
this precision would cover 250,000km2.  The bounding box that we specified
measures approximately 44km x 33km, or about 1,452km2, so we are well within
safe limits; we definitely won’t create too many buckets in memory.


The response from the preceding request looks like this:


...
"aggregations": {
  "new_york": {
     "buckets": [ [image: 1]
        {
           "key": "dr5rs",
           "doc_count": 2
        },
        {
           "key": "dr5re",
           "doc_count": 1
        }
     ]
  }
}
...


	[image: 1]

	Each bucket contains the geohash as the key.





Again, we didn’t specify any subaggregations, so all we got back was the
document count. We could have asked for popular restaurant types, average
price, or other details.

Tip

To plot these buckets on a map, you need a library that
understands how to convert a geohash into the equivalent bounding box or
central point. Libraries exist in JavaScript and other languages
that will perform this conversion for you, but you can also use information from
“geo_bounds Aggregation” to perform a similar job.



















geo_bounds Aggregation


In our previous example, we filtered our results by using a
bounding box that covered the greater New York area.  However, our results
were all located in downtown Manhattan.  When displaying a map for our user, it
makes sense to zoom into the area of the map that contains the data; there
is no point in showing lots of empty space.


The geo_bounds aggregation does exactly this: it calculates the smallest
bounding box that is needed to encapsulate all of the geo-points:


GET /attractions/restaurant/_search?search_type=count
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "location": {
            "top_left": {
              "lat":  40,8,
              "lon": -74.1
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.9
            }
          }
        }
      }
    }
  },
  "aggs": {
    "new_york": {
      "geohash_grid": {
        "field":     "location",
        "precision": 5
      }
    },
    "map_zoom": { [image: 1]
      "geo_bounds": {
        "field":     "location"
      }
    }
  }
}


	[image: 1]

	The geo_bounds aggregation will calculate the smallest bounding box required to encapsulate all of the documents matching our query.





The response now includes a bounding box that we can use to zoom our map:


...
"aggregations": {
  "map_zoom": {
     "bounds": {
        "top_left": {
           "lat":  40.722,
           "lon": -74.011
        },
        "bottom_right": {
           "lat":  40.715,
           "lon": -73.983
        }
     }
  },
...


In fact, we could even use the geo_bounds aggregation inside each geohash
cell, in case the geo-points inside a cell are clustered in just a part of the
cell:


GET /attractions/restaurant/_search?search_type=count
{
  "query": {
    "filtered": {
      "filter": {
        "geo_bounding_box": {
          "location": {
            "top_left": {
              "lat":  40,8,
              "lon": -74.1
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.9
            }
          }
        }
      }
    }
  },
  "aggs": {
    "new_york": {
      "geohash_grid": {
        "field":     "location",
        "precision": 5
      },
      "aggs": {
        "cell": { [image: 1]
          "geo_bounds": {
            "field": "location"
          }
        }
      }
    }
  }
}


	[image: 1]

	The cell_bounds subaggregation is calculated for every geohash cell.





Now the points in each cell have a bounding box:


...
"aggregations": {
  "new_york": {
     "buckets": [
        {
           "key": "dr5rs",
           "doc_count": 2,
           "cell": {
              "bounds": {
                 "top_left": {
                    "lat":  40.722,
                    "lon": -73.989
                 },
                 "bottom_right": {
                    "lat":  40.719,
                    "lon": -73.983
                 }
              }
           }
        },
...











Administration, Monitoring, and Deployment

Part VII. Administration, Monitoring, and Deployment



The majority of this book is aimed at building applications by using Elasticsearch
as the backend.  This section is a little different.  Here, you will learn
how to manage Elasticsearch itself.  Elasticsearch is a complex piece of
software, with many moving parts.  Many APIs are designed
to help you manage your Elasticsearch deployment.


In this chapter, we cover three main topics:



	
Monitoring your cluster’s vital statistics, understanding which behaviors are normal and which
should be cause for alarm, and interpreting various stats provided by Elasticsearch



	
Deploying your cluster to production, including best practices and important
configuration that should (or should not!) be changed



	
Performing post-deployment logistics, such as a rolling restart or backup of
your cluster





















































Monitoring

Chapter 44. Monitoring



Elasticsearch is often deployed as a cluster of nodes.  A variety of
APIs let you manage and monitor the cluster itself, rather than interact
with the data stored within the cluster.


As with most functionality in Elasticsearch, there is an overarching design goal
that tasks should be performed through an API rather than by modifying static
configuration files.  This becomes especially important as your cluster scales.
Even with a provisioning system (such as Puppet, Chef, and Ansible), a single HTTP API call
is often simpler than pushing new configurations to hundreds of physical machines.


To that end, this chapter presents the various APIs that allow you to
dynamically tweak, tune, and configure your cluster.  It also covers a
host of APIs that provide statistics about the cluster itself so you can
monitor for health and performance.








Marvel for Monitoring


At the very beginning of the book (“Installing Marvel”), we encouraged you to install
Marvel, a management monitoring tool for Elasticsearch, because it would enable
interactive code samples throughout the book.


If you didn’t install Marvel then, we encourage you to install it now.  This
chapter introduces a large number of APIs that emit an even larger number
of statistics.  These stats track everything from heap memory usage and garbage
collection counts to open file descriptors.  These statistics are invaluable
for debugging a misbehaving cluster.


The problem is that these APIs provide a single data point: the statistic
right now.  Often you’ll want to see historical data too, so you can
plot a trend.  Knowing memory usage at this instant is helpful, but knowing
memory usage over time is much more useful.


Furthermore, the output of these APIs can get truly hairy as your cluster grows.
Once you have a dozen nodes, let alone a hundred, reading through stacks of JSON
becomes very tedious.


Marvel periodically polls these APIs and stores the data back in Elasticsearch.
This allows Marvel to query and aggregate the metrics, and then provide interactive
graphs in your browser.  There are no proprietary statistics that Marvel exposes;
it uses the same stats APIs that are accessible to you.  But it does greatly
simplify the collection and graphing of those statistics.


Marvel is free to use in development, so you should definitely try it out!

















Cluster Health


An Elasticsearch cluster may consist of a single node with a single index.  Or it
may have a hundred data nodes, three dedicated masters, a few dozen client nodes—all operating on a thousand indices (and tens of thousands of shards).


No matter the scale of the cluster, you’ll want a quick way to assess the status
of your cluster.  The Cluster Health API fills that role.  You can think of it
as a 10,000-foot view of your cluster.  It can reassure you that everything
is all right, or alert you to a problem somewhere in your cluster.


Let’s execute a cluster-health API and see what the response looks like:


GET _cluster/health


Like other APIs in Elasticsearch, cluster-health will return a JSON response.
This makes it convenient to parse for automation and alerting.  The response
contains some critical information about your cluster:


{
   "cluster_name": "elasticsearch_zach",
   "status": "green",
   "timed_out": false,
   "number_of_nodes": 1,
   "number_of_data_nodes": 1,
   "active_primary_shards": 10,
   "active_shards": 10,
   "relocating_shards": 0,
   "initializing_shards": 0,
   "unassigned_shards": 0
}


The most important piece of information in the response is the status field.
The status may be one of three values:


	green

	
    All primary and replica shards are allocated. Your cluster is 100%
operational.



	yellow

	
    All primary shards are allocated, but at least one replica is missing.
No data is missing, so search results will still be complete. However,  your
high availability is compromised to some degree.  If more shards disappear, you
might lose data.  Think of yellow as a warning that should prompt investigation.



	red

	
    At least one primary shard (and all of its replicas) are missing. This means
that you are missing data: searches will return partial results, and indexing
into that shard will return an exception.






The green/yellow/red status is a great way to glance at your cluster and understand
what’s going on.  The rest of the metrics give you a general summary of your cluster:



	
number_of_nodes and number_of_data_nodes are fairly self-descriptive.



	
active_primary_shards indicates the number of primary shards in your cluster. This
is an aggregate total across all indices.



	
active_shards is an aggregate total of all shards across all indices, which
includes replica shards.



	
relocating_shards shows the number of shards that are currently moving from
one node to another node.  This number is often zero, but can increase when
Elasticsearch decides a cluster is not properly balanced, a new node is added,
or a node is taken down, for example.



	
initializing_shards is a count of shards that are being freshly created. For
example, when you first create an index, the shards will all briefly reside in
initializing state.  This is typically a transient event, and shards shouldn’t
linger in initializing too long.  You may also see initializing shards when a
node is first restarted: as shards are loaded from disk, they start as initializing.



	
unassigned_shards are shards that exist in the cluster state, but cannot be
found in the cluster itself.  A common source of unassigned shards are unassigned
replicas.  For example, an index with five shards and one replica will have five unassigned
replicas in a single-node cluster.  Unassigned shards will also be present if your
cluster is red (since primaries are missing).














Drilling Deeper: Finding Problematic Indices


Imagine something goes wrong one day, and you notice that your cluster health
looks like this:


{
   "cluster_name": "elasticsearch_zach",
   "status": "red",
   "timed_out": false,
   "number_of_nodes": 8,
   "number_of_data_nodes": 8,
   "active_primary_shards": 90,
   "active_shards": 180,
   "relocating_shards": 0,
   "initializing_shards": 0,
   "unassigned_shards": 20
}


OK, so what can we deduce from this health status?  Well, our cluster is red,
which means we are missing data (primary + replicas).  We know our cluster has
10 nodes, but see only 8 data nodes listed in the health.  Two of our nodes
have gone missing.  We see that there are 20 unassigned shards.


That’s about all the information we can glean.  The nature of those missing
shards are still a mystery.  Are we missing 20 indices with 1 primary shard each?
Or 1 index with 20 primary shards? Or 10 indices with 1 primary + 1 replica?
Which index?


To answer these questions, we need to ask cluster-health for a little more
information by using the level parameter:


GET _cluster/health?level=indices


This parameter will make the cluster-health API add a list of indices in our
cluster and details about each of those indices (status, number of shards,
unassigned shards, and so forth):


{
   "cluster_name": "elasticsearch_zach",
   "status": "red",
   "timed_out": false,
   "number_of_nodes": 8,
   "number_of_data_nodes": 8,
   "active_primary_shards": 90,
   "active_shards": 180,
   "relocating_shards": 0,
   "initializing_shards": 0,
   "unassigned_shards": 20
   "indices": {
      "v1": {
         "status": "green",
         "number_of_shards": 10,
         "number_of_replicas": 1,
         "active_primary_shards": 10,
         "active_shards": 20,
         "relocating_shards": 0,
         "initializing_shards": 0,
         "unassigned_shards": 0
      },
      "v2": {
         "status": "red", [image: 1]
         "number_of_shards": 10,
         "number_of_replicas": 1,
         "active_primary_shards": 0,
         "active_shards": 0,
         "relocating_shards": 0,
         "initializing_shards": 0,
         "unassigned_shards": 20 [image: 2]
      },
      "v3": {
         "status": "green",
         "number_of_shards": 10,
         "number_of_replicas": 1,
         "active_primary_shards": 10,
         "active_shards": 20,
         "relocating_shards": 0,
         "initializing_shards": 0,
         "unassigned_shards": 0
      },
      ....
   }
}


	[image: 1]

	We can now see that the v2 index is the index that has made the cluster red.


	[image: 2]

	And it becomes clear that all 20 missing shards are from this index.





Once we ask for the indices output, it becomes immediately clear which index is
having problems: the v2 index.  We also see that the index has 10 primary shards
and one replica, and that all 20 shards are missing.  Presumably these 20 shards
were on the two nodes that are missing from our cluster.


The level parameter accepts one more option:


GET _cluster/health?level=shards


The shards option will provide a very verbose output, which lists the status
and location of every shard inside every index.  This output is sometimes useful,
but because of the verbosity can be difficult to work with.  Once you know the index
that is having problems, other APIs that we discuss in this chapter will tend
to be more helpful.

















Blocking for Status Changes


The cluster-health API has another neat trick that is useful when building
unit and integration tests, or automated scripts that work with Elasticsearch.
You can specify a wait_for_status parameter, which will only return after the status is satisfied.  For example:


GET _cluster/health?wait_for_status=green


This call will block (not return control to your program) until the cluster-health has turned green, meaning all primary and replica shards have been allocated.
This is important for automated scripts and tests.


If you create an index, Elasticsearch must broadcast the change in cluster state
to all nodes.  Those nodes must initialize those new shards, and then respond to the
master that the shards are Started.  This process is fast, but because network
latency may take 10–20ms.


If you have an automated script that (a) creates an index and then (b) immediately
attempts to index a document, this operation may fail, because the index has not
been fully initialized yet.  The time between (a) and (b) will likely be less than 1ms—not nearly enough time to account for network latency.


Rather than sleeping, just have your script/test call cluster-health with
a wait_for_status parameter.  As soon as the index is fully created, the cluster-health will change to green, the call will return control to your script, and you may
begin indexing.


Valid options are green, yellow, and red.  The call will return when the
requested status (or one “higher”) is reached. For example, if you request yellow,
a status change to yellow or green will unblock the call.
























Monitoring Individual Nodes


Cluster-health is at one end of the spectrum—a very high-level overview of
everything in your cluster.  The node-stats API is at the other end.  It provides
a bewildering array of statistics about each node in your cluster.


Node-stats provides so many stats that, until you are accustomed to the output,
you may be unsure which metrics are most important to keep an eye on.  We’ll
highlight the most important metrics to monitor (but we encourage you to
log all the metrics provided—or use Marvel—because you’ll never know when
you need one stat or another).


The node-stats API can be executed with the following:


GET _nodes/stats


Starting at the top of the output, we see the cluster name and our first node:


{
   "cluster_name": "elasticsearch_zach",
   "nodes": {
      "UNr6ZMf5Qk-YCPA_L18BOQ": {
         "timestamp": 1408474151742,
         "name": "Zach",
         "transport_address": "inet[zacharys-air/192.168.1.131:9300]",
         "host": "zacharys-air",
         "ip": [
            "inet[zacharys-air/192.168.1.131:9300]",
            "NONE"
         ],
...


The nodes are listed in a hash, with the key being the UUID of the node.  Some
information about the node’s network properties are displayed (such as transport address,
and host). These values are useful for debugging discovery problems, where
nodes won’t join the cluster. Often you’ll see that the port being used is wrong,
or the node is binding to the wrong IP address/interface.










indices Section


The indices section lists aggregate statistics for all the indices that reside
on this particular node:


    "indices": {
        "docs": {
           "count": 6163666,
           "deleted": 0
        },
        "store": {
           "size_in_bytes": 2301398179,
           "throttle_time_in_millis": 122850
        },


The returned statistics are grouped into the following sections:



	
docs shows how many documents reside on
this node, as well as the number of deleted docs that haven’t been purged
from segments yet.



	
The store portion indicates how much physical storage is consumed by the node.
This metric includes both primary and replica shards.  If the throttle time is
large, it may be an indicator that your disk throttling is set too low
(discussed in “Segments and Merging”).






        "indexing": {
           "index_total": 803441,
           "index_time_in_millis": 367654,
           "index_current": 99,
           "delete_total": 0,
           "delete_time_in_millis": 0,
           "delete_current": 0
        },
        "get": {
           "total": 6,
           "time_in_millis": 2,
           "exists_total": 5,
           "exists_time_in_millis": 2,
           "missing_total": 1,
           "missing_time_in_millis": 0,
           "current": 0
        },
        "search": {
           "open_contexts": 0,
           "query_total": 123,
           "query_time_in_millis": 531,
           "query_current": 0,
           "fetch_total": 3,
           "fetch_time_in_millis": 55,
           "fetch_current": 0
        },
        "merges": {
           "current": 0,
           "current_docs": 0,
           "current_size_in_bytes": 0,
           "total": 1128,
           "total_time_in_millis": 21338523,
           "total_docs": 7241313,
           "total_size_in_bytes": 5724869463
        },



	
indexing shows the number of docs that have been indexed.  This value is a monotonically
increasing counter; it doesn’t decrease when docs are deleted.  Also note that it
is incremented anytime an index operation happens internally, which includes
things like updates.


Also listed are times for indexing, the number of docs currently being indexed,
and similar statistics for deletes.



	
get shows statistics about get-by-ID statistics.  This includes GET and
HEAD requests for a single document.



	
search describes the number of active searches (open_contexts), number of
queries total, and the amount of time spent on queries since the node was
started.  The ratio between query_time_in_millis / query_total can be used as a
rough indicator for how efficient your queries are.  The larger the ratio,
the more time each query is taking, and you should consider tuning or optimization.


The fetch statistics detail the second half of the query process (the fetch in
query-then-fetch).  If more time is spent in fetch than query, this can be an
indicator of slow disks or very large documents being fetched, or
potentially search requests with paginations that are too large (for example, size: 10000).



	
merges contains information about Lucene segment merges.  It will tell you
the number of merges that are currently active, the number of docs involved, the cumulative
size of segments being merged, and the amount of time spent on merges in total.


Merge statistics can be important if your cluster is write heavy.  Merging consumes
a large amount of disk I/O and CPU resources.  If your index is write heavy and
you see large merge numbers, be sure to read “Indexing Performance Tips”.


Note: updates and deletes will contribute to large merge numbers too, since they
cause segment fragmentation that needs to be merged out eventually.






        "filter_cache": {
           "memory_size_in_bytes": 48,
           "evictions": 0
        },
        "id_cache": {
           "memory_size_in_bytes": 0
        },
        "fielddata": {
           "memory_size_in_bytes": 0,
           "evictions": 0
        },
        "segments": {
           "count": 319,
           "memory_in_bytes": 65812120
        },
        ...



	
filter_cache indicates the amount of memory used by the cached filter bitsets,
and the number of times a filter has been evicted.  A large number of evictions
could indicate that you need to increase the filter cache size, or that
your filters are not caching well (for example, they are churning heavily because of high cardinality,
such as caching now date expressions).


However, evictions are a difficult metric to evaluate.  Filters are cached on a
per-segment basis, and evicting a filter from a small segment is much less
expensive than evicting a filter from a large segment.  It’s possible that you have many evictions, but they all occur on small segments, which means they have
little impact on query performance.


Use the eviction metric as a rough guideline.  If you see a large number, investigate
your filters to make sure they are caching well.  Filters that constantly evict,
even on small segments, will be much less effective than properly cached filters.



	
id_cache shows the memory usage by parent/child mappings.  When you use
parent/children, the id_cache maintains an in-memory join table that maintains
the relationship.  This statistic will show you how much memory is being used.
There is little you can do to affect this memory usage, since it has a fairly linear
relationship with the number of parent/child docs.  It is heap-resident, however,
so it’s a good idea to keep an eye on it.



	
field_data displays the memory used by fielddata, which is used for aggregations,
sorting, and more.  There is also an eviction count.  Unlike filter_cache, the eviction
count here is useful:  it should be zero or very close.  Since field data
is not a cache, any eviction is costly and should be avoided.  If you see
evictions here, you need to reevaluate your memory situation, fielddata limits,
queries, or all three.



	
segments will tell you the number of Lucene segments this node currently serves.
This can be an important number.  Most indices should have around 50–150 segments,
even if they are terabytes in size with billions of documents.  Large numbers
of segments can indicate a problem with merging (for example, merging is not keeping up
with segment creation).  Note that this statistic is the aggregate total of all
indices on the node, so keep that in mind.


The memory statistic gives you an idea of the amount of memory being used by the
Lucene segments themselves.  This includes low-level data structures such as
posting lists, dictionaries, and bloom filters.  A very large number of segments
will increase the amount of overhead lost to these data structures, and the memory
usage can be a handy metric to gauge that overhead.





















OS and Process Sections


The OS and Process sections are fairly self-explanatory and won’t be covered
in great detail.  They list basic resource statistics such as CPU and load.  The
OS section describes it for the entire OS, while the Process section shows just
what the Elasticsearch JVM process is using.


These are obviously useful metrics, but are often being measured elsewhere in your
monitoring stack. Some stats include the following:



	
CPU



	
Load



	
Memory usage



	
Swap usage



	
Open file descriptors





















JVM Section


The jvm section contains some critical information about the JVM process that
is running Elasticsearch.  Most important, it contains garbage collection details,
which have a large impact on the stability of your Elasticsearch cluster.


Garbage Collection Primer

Before we describe the stats, it is useful to give a crash course in garbage
collection and its impact on Elasticsearch.  If you are familar with garbage
collection in the JVM, feel free to skip down.


Java is a garbage-collected language, which means that the programmer does
not manually manage memory allocation and deallocation.  The programmer simply
writes code, and the Java Virtual Machine (JVM) manages the process of allocating
memory as needed, and then later cleaning up that memory when no longer needed.


When memory is allocated to a JVM process, it is allocated in a big chunk called
the heap.  The JVM then breaks the heap into two groups, referred to as
generations:


	Young (or Eden)

	
    The space where newly instantiated objects are allocated. The
young generation space is often quite small, usually 100 MB–500 MB.  The young-gen
also contains two survivor spaces.



	Old

	
    The space where older objects are stored.  These objects are expected to be long-lived
and persist for a long time.  The old-gen is often much larger than then young-gen,
and Elasticsearch nodes can see old-gens as large as 30 GB.






When an object is instantiated, it is placed into young-gen.  When the young
generation space is full, a young-gen garbage collection (GC) is started.  Objects that are still
“alive” are moved into one of the survivor spaces, and “dead” objects are removed.
If an object has survived several young-gen GCs, it will be “tenured” into the
old generation.


A similar process happens in the old generation:  when the space becomes full, a
garbage collection is started and dead objects are removed.


Nothing comes for free, however.  Both the young- and old-generation garbage collectors
have phases that “stop the world.”  During this time, the JVM literally halts
execution of the program so it can trace the object graph and collect dead
objects. During this stop-the-world phase, nothing happens.  Requests are not serviced,
pings are not responded to, shards are not relocated.  The world quite literally
stops.


This isn’t a big deal for the young generation; its small size means GCs execute
quickly.  But the old-gen is quite a bit larger, and a slow GC here could mean
1s or even 15s of pausing—which is unacceptable for server software.


The garbage collectors in the JVM are very sophisticated algorithms and do
a great job minimizing pauses.  And Elasticsearch tries very hard to be garbage-collection friendly, by intelligently reusing objects internally, reusing network
buffers, and offering features like “Doc Values”.  But ultimately,
GC frequency and duration is a metric that needs to be watched by you, since it
is the number one culprit for cluster instability.


A cluster that is frequently experiencing long GC will be a cluster that is under
heavy load with not enough memory.  These long GCs will make nodes drop off the
cluster for brief periods.  This instability causes shards to relocate frequently
as Elasticsearch tries to keep the cluster balanced and enough replicas available.  This in
turn increases network traffic and disk I/O, all while your cluster is attempting
to service the normal indexing and query load.


In short, long GCs are bad and need to be minimized as much as possible.




Because garbage collection is so critical to Elasticsearch, you should become intimately
familiar with this section of the node-stats API:


        "jvm": {
            "timestamp": 1408556438203,
            "uptime_in_millis": 14457,
            "mem": {
               "heap_used_in_bytes": 457252160,
               "heap_used_percent": 44,
               "heap_committed_in_bytes": 1038876672,
               "heap_max_in_bytes": 1038876672,
               "non_heap_used_in_bytes": 38680680,
               "non_heap_committed_in_bytes": 38993920,



	
The jvm section first lists some general stats about heap memory usage.  You
can see how much of the heap is being used, how much is committed (actually allocated
to the process), and the max size the heap is allowed to grow to.  Ideally,
heap_committed_in_bytes should be identical to heap_max_in_bytes.  If the
committed size is smaller, the JVM will have to resize the heap eventually—and this is a very expensive process.  If your numbers are not identical, see
“Heap: Sizing and Swapping” for how to configure it correctly.


The heap_used_percent metric is a useful number to keep an eye on.  Elasticsearch
is configured to initiate GCs when the heap reaches 75% full.  If your node is
consistently >= 75%, your node is experiencing memory pressure.
This is a warning sign that slow GCs may be in your near future.


If the heap usage is consistently >=85%, you are in trouble.  Heaps over 90–95%
are in risk of horrible performance with long 10–30s GCs at best, and out-of-memory
(OOM) exceptions at worst.






   "pools": {
      "young": {
         "used_in_bytes": 138467752,
         "max_in_bytes": 279183360,
         "peak_used_in_bytes": 279183360,
         "peak_max_in_bytes": 279183360
      },
      "survivor": {
         "used_in_bytes": 34865152,
         "max_in_bytes": 34865152,
         "peak_used_in_bytes": 34865152,
         "peak_max_in_bytes": 34865152
      },
      "old": {
         "used_in_bytes": 283919256,
         "max_in_bytes": 724828160,
         "peak_used_in_bytes": 283919256,
         "peak_max_in_bytes": 724828160
      }
   }
},



	
The young, survivor, and old sections will give you a breakdown of memory
usage of each generation in the GC.  These stats are handy for keeping an eye on
relative sizes, but are often not overly important when debugging problems.






"gc": {
   "collectors": {
      "young": {
         "collection_count": 13,
         "collection_time_in_millis": 923
      },
      "old": {
         "collection_count": 0,
         "collection_time_in_millis": 0
      }
   }
}



	
gc section shows the garbage collection counts and cumulative time for both
young and old generations.  You can safely ignore the young generation counts
for the most part:  this number will usually be large.  That is perfectly
normal.


In contrast, the old generation collection count should remain small, and
have a small collection_time_in_millis.  These are cumulative counts, so it is
hard to give an exact number when you should start worrying (for example, a node with a
one-year uptime will have a large count even if it is healthy). This is one of the
reasons that tools such as Marvel are so helpful.  GC counts over time are the
important consideration.


Time spent GC’ing is also important.  For example, a certain amount of garbage
is generated while indexing documents.  This is normal and causes a GC every
now and then. These GCs are almost always fast and have little effect on the
node: young generation takes a millisecond or two, and old generation takes
a few hundred milliseconds.  This is much different from 10-second GCs.


Our best advice is to collect collection counts and duration periodically (or use Marvel)
and keep an eye out for frequent GCs.  You can also enable slow-GC logging,
discussed in “Logging”.





















Threadpool Section


Elasticsearch maintains threadpools internally.  These threadpools
cooperate to get work done, passing work between each other as necessary. In
general, you don’t need to configure or tune the threadpools, but it is sometimes
useful to see their stats so you can gain insight into how your cluster is behaving.


There are about a dozen threadpools, but they all share the same format:


  "index": {
     "threads": 1,
     "queue": 0,
     "active": 0,
     "rejected": 0,
     "largest": 1,
     "completed": 1
  }


Each threadpool lists the number of threads that are configured (threads),
how many of those threads are actively processing some work (active), and how
many work units are sitting in a queue (queue).


If the queue fills up to its limit, new work units will begin to be rejected, and
you will see that reflected in the rejected statistic.  This is often a sign
that your cluster is starting to bottleneck on some resources, since a full
queue means your node/cluster is processing at maximum speed but unable to keep
up with the influx of work.


Bulk Rejections

If you are going to encounter queue rejections, it will most likely be caused
by bulk indexing requests.  It is easy to send many bulk requests to Elasticsearch
by using concurrent import processes.  More is better, right?


In reality, each cluster has a certain limit at which it can not keep up with
ingestion.  Once this threshold is crossed, the queue will quickly fill up, and
new bulks will be rejected.


This is a good thing.  Queue rejections are a useful form of back pressure.  They
let you know that your cluster is at maximum capacity, which is much better than
sticking data into an in-memory queue.  Increasing the queue size doesn’t increase
performance; it just hides the problem.  If your cluster can process only 10,000
docs per second, it doesn’t matter whether the queue is 100 or 10,000,000—your cluster can
still process only 10,000 docs per second.


The queue simply hides the performance problem and carries a real risk of data-loss.
Anything sitting in a queue is by definition not processed yet.  If the node
goes down, all those requests are lost forever.  Furthermore, the queue eats
up a lot of memory, which is not ideal.


It is much better to handle queuing in your application by gracefully handling
the back pressure from a full queue.  When you receive bulk rejections, you should take these steps:


	
Pause the import thread for 3–5 seconds.



	
Extract the rejected actions from the bulk response, since it is probable that
many of the actions were successful. The bulk response will tell you which succeeded
and which were rejected.



	
Send a new bulk request with just the rejected actions.



	
Repeat from step 1 if rejections are encountered again.







Using this procedure, your code naturally adapts to the load of your cluster and
naturally backs off.


Rejections are not errors: they just mean you should try again later.




There are a dozen threadpools.  Most you can safely ignore, but a few
are good to keep an eye on:


	indexing

	
Threadpool for normal indexing requests



	bulk

	
Bulk requests, which are distinct from the nonbulk indexing requests



	get

	
Get-by-ID operations



	search

	
All search and query requests



	merging

	
Threadpool dedicated to managing Lucene merges





















FS and Network Sections


Continuing down the node-stats API, you’ll see a bunch of statistics about your
filesystem:  free space, data directory paths, disk I/O stats, and more.  If you are
not monitoring free disk space, you can get those stats here.  The disk I/O stats
are also handy, but often more specialized command-line tools (iostat, for example)
are more useful.


Obviously, Elasticsearch has a difficult time functioning if you run out of disk
space—so make sure you don’t.


There are also two sections on network statistics:


        "transport": {
            "server_open": 13,
            "rx_count": 11696,
            "rx_size_in_bytes": 1525774,
            "tx_count": 10282,
            "tx_size_in_bytes": 1440101928
         },
         "http": {
            "current_open": 4,
            "total_opened": 23
         },



	
transport shows some basic stats about the transport address.  This
relates to inter-node communication (often on port 9300) and any transport client
or node client connections.  Don’t worry if you see many connections here;
Elasticsearch maintains a large number of connections between nodes.



	
http represents stats about the HTTP port (often 9200).  If you see a very
large total_opened number that is constantly increasing, that is a sure sign
that one of your HTTP clients is not using keep-alive connections.  Persistent,
keep-alive connections are important for performance, since building up and tearing
down sockets is expensive (and wastes file descriptors).  Make sure your clients
are configured appropriately.





















Circuit Breaker


Finally, we come to the last section: stats about the fielddata circuit breaker
(introduced in “Circuit Breaker”):


         "fielddata_breaker": {
            "maximum_size_in_bytes": 623326003,
            "maximum_size": "594.4mb",
            "estimated_size_in_bytes": 0,
            "estimated_size": "0b",
            "overhead": 1.03,
            "tripped": 0
         }


Here, you can determine the maximum circuit-breaker size (for example, at what
size the circuit breaker will trip if a query attempts to use more memory).  This section
will also let you know the number of times the circuit breaker has been tripped, and
the currently configured overhead.  The overhead is used to pad estimates, because some queries are more difficult to estimate than others.


The main thing to watch is the tripped metric.  If this number is large or
consistently increasing, it’s a sign that your queries may need to be optimized
or that you may need to obtain more memory (either per box or by adding more
nodes).
























Cluster Stats


The cluster-stats API provides similar output to the node-stats.  There
is one crucial difference: Node Stats shows you statistics per node, while
cluster-stats shows you the sum total of all nodes in a single metric.


This provides some useful stats to glance at.  You can see for example, that your entire cluster
is using 50% of the available heap or that filter cache is not evicting heavily.  Its
main use is to provide a quick summary that is more extensive than
the cluster-health, but less detailed than node-stats. It is also useful for
clusters that are very large, which makes node-stats output difficult
to read.


The API may be invoked as follows:


GET _cluster/stats

















Index Stats


So far, we have been looking at node-centric statistics:  How much memory does
this node have?  How much CPU is being used?  How many searches is this node
servicing?


Sometimes it is useful to look at statistics from an index-centric perspective:
How many search requests is this index receiving?  How much time is spent fetching
docs in that index?


To do this, select the index (or indices) that you are interested in and
execute an Index stats API:


GET my_index/_stats [image: 1]

GET my_index,another_index/_stats [image: 2]

GET _all/_stats [image: 3]


	[image: 1]

	Stats for my_index.


	[image: 2]

	Stats for multiple indices can be requested by separating their names with a comma.


	[image: 3]

	Stats indices can be requested using the special _all index name.





The stats returned will be familar to the node-stats output: search fetch get
index bulk segment counts and so forth


Index-centric stats can be useful for identifying or verifying hot indices
inside your cluster, or trying to determine why some indices are faster/slower
than others.


In practice, however, node-centric statistics tend to be more useful.  Entire
nodes tend to bottleneck, not individual indices.  And because indices
are usually spread across multiple nodes, index-centric statistics
are usually not very helpful because they aggregate data from different physical machines
operating in different environments.


Index-centric stats are a useful tool to keep in your repertoire, but are not usually
the first tool to reach for.

















Pending Tasks


There are certain tasks that only the master can perform, such as creating a new 
index or moving shards around the cluster.  Since a cluster can have only one
master, only one node can ever process cluster-level metadata changes.  For
99.9999% of the time, this is never a problem.  The queue of metadata changes
remains essentially zero.


In some rare clusters, the number of metadata changes occurs faster than
the master can process them.  This leads to a buildup of pending actions that
are queued.


The pending-tasks API will show you what (if any) cluster-level metadata changes
are pending in the queue:


GET _cluster/pending_tasks


Usually, the response will look like this:


{
   "tasks": []
}


This means there are no pending tasks.  If you have one of the rare clusters that
bottlenecks on the master node, your pending task list may look like this:


{
   "tasks": [
      {
         "insert_order": 101,
         "priority": "URGENT",
         "source": "create-index [foo_9], cause [api]",
         "time_in_queue_millis": 86,
         "time_in_queue": "86ms"
      },
      {
         "insert_order": 46,
         "priority": "HIGH",
         "source": "shard-started ([foo_2][1], node[tMTocMvQQgGCkj7QDHl3OA], [P],
         s[INITIALIZING]), reason [after recovery from gateway]",
         "time_in_queue_millis": 842,
         "time_in_queue": "842ms"
      },
      {
         "insert_order": 45,
         "priority": "HIGH",
         "source": "shard-started ([foo_2][0], node[tMTocMvQQgGCkj7QDHl3OA], [P],
         s[INITIALIZING]), reason [after recovery from gateway]",
         "time_in_queue_millis": 858,
         "time_in_queue": "858ms"
      }
  ]
}


You can see that tasks are assigned a priority (URGENT is processed before HIGH,
for example), the order it was inserted, how long the action has been queued and
what the action is trying to perform.  In the preceding list, there is a create-index
action and two shard-started actions pending.


When Should I Worry About Pending Tasks?

As mentioned, the master node is rarely the bottleneck for clusters.  The only
time it could bottleneck is if the cluster state is both very large
and updated frequently.


For example, if you allow customers to create as many dynamic fields as they wish,
and have a unique index for each customer every day, your cluster state will grow
very large.  The cluster state includes (among other things) a list of all indices,
their types, and the fields for each index.


So if you have 100,000 customers, and each customer averages 1,000 fields and 90
days of retention—that’s nine billion fields to keep in the cluster state.
Whenever this changes, the nodes must be notified.


The master must process these changes, which requires nontrivial CPU overhead,
plus the network overhead of pushing the updated cluster state to all nodes.


It is these clusters that may begin to see cluster-state actions queuing up.
There is no easy solution to this problem, however.  You have three options:



	
Obtain a beefier master node.  Vertical scaling just delays the inevitable,
unfortunately.



	
Restrict the dynamic nature of the documents in some way, so as to limit the
cluster-state size.



	
Spin up another cluster after a certain threshold has been crossed.























cat API


If you work from the command line often, the cat APIs will be helpful
to you.  Named after the linux cat command, these APIs are designed to
work like *nix command-line tools.


They provide statistics that are identical to all the previously discussed APIs
(Health, node-stats, and so forth), but present the output in tabular form instead of
JSON.  This is very convenient for a system administrator, and you just want
to glance over your cluster or find nodes with high memory usage.


Executing a plain GET against the cat endpoint will show you all available
APIs:


GET /_cat

=^.^=
/_cat/allocation
/_cat/shards
/_cat/shards/{index}
/_cat/master
/_cat/nodes
/_cat/indices
/_cat/indices/{index}
/_cat/segments
/_cat/segments/{index}
/_cat/count
/_cat/count/{index}
/_cat/recovery
/_cat/recovery/{index}
/_cat/health
/_cat/pending_tasks
/_cat/aliases
/_cat/aliases/{alias}
/_cat/thread_pool
/_cat/plugins
/_cat/fielddata
/_cat/fielddata/{fields}


Many of these APIs should look familiar to you (and yes, that’s a cat at the top
:) ).  Let’s take a look at the Cat Health API:


GET /_cat/health

1408723713 12:08:33 elasticsearch_zach yellow 1 1 114 114 0 0 114


The first thing you’ll notice is that the response is plain text in tabular form,
not JSON.  The second thing you’ll notice is that there are no column headers
enabled by default.  This is designed to emulate *nix tools, since it is assumed
that once you become familiar with the output, you no longer want to see
the headers.


To enable headers, add the ?v parameter:


GET /_cat/health?v

epoch   time    cluster status node.total node.data shards pri relo init
1408[..] 12[..] el[..]  1         1         114 114    0    0     114
unassign


Ah, much better.  We now see the timestamp, cluster name, status, the number of
nodes in the cluster, and more—all the same information as the cluster-health
API.


Let’s look at node-stats in the cat API:


GET /_cat/nodes?v

host         ip            heap.percent ram.percent load node.role master name
zacharys-air 192.168.1.131           45          72 1.85 d         *      Zach


We see some stats about the nodes in our cluster, but the output is basic compared
to the full node-stats output. You can
include many additional metrics, but rather than consulting the documentation, let’s just ask the cat
API what is available.


You can do this by adding ?help to any API:


GET /_cat/nodes?help

id               | id,nodeId               | unique node id
pid              | p                       | process id
host             | h                       | host name
ip               | i                       | ip address
port             | po                      | bound transport port
version          | v                       | es version
build            | b                       | es build hash
jdk              | j                       | jdk version
disk.avail       | d,disk,diskAvail        | available disk space
heap.percent     | hp,heapPercent          | used heap ratio
heap.max         | hm,heapMax              | max configured heap
ram.percent      | rp,ramPercent           | used machine memory ratio
ram.max          | rm,ramMax               | total machine memory
load             | l                       | most recent load avg
uptime           | u                       | node uptime
node.role        | r,role,dc,nodeRole      | d:data node, c:client node
master           | m                       | m:master-eligible, *:current master
...
...


(Note that the output has been truncated for brevity).


The first column shows the full name, the second column shows the short name,
and the third column offers a brief description about the parameter. Now that
we know some column names, we can ask for those explicitly by using the ?h
parameter:


GET /_cat/nodes?v&h=ip,port,heapPercent,heapMax

ip            port heapPercent heapMax
192.168.1.131 9300          53 990.7mb


Because the cat API tries to behave like *nix utilities, you can pipe the output
to other tools such as sort grep or awk.  For example, we can find the largest
index in our cluster by using the following:


% curl 'localhost:9200/_cat/indices?bytes=b' | sort -rnk8

yellow test_names         5 1 3476004 0 376324705 376324705
yellow .marvel-2014.08.19 1 1  263878 0 160777194 160777194
yellow .marvel-2014.08.15 1 1  234482 0 143020770 143020770
yellow .marvel-2014.08.09 1 1  222532 0 138177271 138177271
yellow .marvel-2014.08.18 1 1  225921 0 138116185 138116185
yellow .marvel-2014.07.26 1 1  173423 0 132031505 132031505
yellow .marvel-2014.08.21 1 1  219857 0 128414798 128414798
yellow .marvel-2014.07.27 1 1   75202 0  56320862  56320862
yellow wavelet            5 1    5979 0  54815185  54815185
yellow .marvel-2014.07.28 1 1   57483 0  43006141  43006141
yellow .marvel-2014.07.21 1 1   31134 0  27558507  27558507
yellow .marvel-2014.08.01 1 1   41100 0  27000476  27000476
yellow kibana-int         5 1       2 0     17791     17791
yellow t                  5 1       7 0     15280     15280
yellow website            5 1      12 0     12631     12631
yellow agg_analysis       5 1       5 0      5804      5804
yellow v2                 5 1       2 0      5410      5410
yellow v1                 5 1       2 0      5367      5367
yellow bank               1 1      16 0      4303      4303
yellow v                  5 1       1 0      2954      2954
yellow p                  5 1       2 0      2939      2939
yellow b0001_072320141238 5 1       1 0      2923      2923
yellow ipaddr             5 1       1 0      2917      2917
yellow v2a                5 1       1 0      2895      2895
yellow movies             5 1       1 0      2738      2738
yellow cars               5 1       0 0      1249      1249
yellow wavelet2           5 1       0 0       615       615


By adding ?bytes=b, we disable the human-readable formatting on numbers and
force them to be listed as bytes.  This output is then piped into sort so that
our indices are ranked according to size (the eighth column).


Unfortunately, you’ll notice that the Marvel indices are clogging up the results,
and we don’t really care about those indices right now.  Let’s pipe the output
through grep and remove anything mentioning Marvel:


% curl 'localhost:9200/_cat/indices?bytes=b' | sort -rnk8 | grep -v marvel

yellow test_names         5 1 3476004 0 376324705 376324705
yellow wavelet            5 1    5979 0  54815185  54815185
yellow kibana-int         5 1       2 0     17791     17791
yellow t                  5 1       7 0     15280     15280
yellow website            5 1      12 0     12631     12631
yellow agg_analysis       5 1       5 0      5804      5804
yellow v2                 5 1       2 0      5410      5410
yellow v1                 5 1       2 0      5367      5367
yellow bank               1 1      16 0      4303      4303
yellow v                  5 1       1 0      2954      2954
yellow p                  5 1       2 0      2939      2939
yellow b0001_072320141238 5 1       1 0      2923      2923
yellow ipaddr             5 1       1 0      2917      2917
yellow v2a                5 1       1 0      2895      2895
yellow movies             5 1       1 0      2738      2738
yellow cars               5 1       0 0      1249      1249
yellow wavelet2           5 1       0 0       615       615


Voila!  After piping through grep (with -v to invert the matches), we get
a sorted list of indices without Marvel cluttering it up.


This is just a simple example of the flexibility of cat at the command line.
Once you get used to using cat, you’ll see it like any other *nix tool and start
going crazy with piping, sorting, and grepping.  If you are a system admin and spend
any time SSH’d into boxes, definitely spend some time getting familiar
with the cat API.











Production Deployment

Chapter 45. Production Deployment



If you have made it this far in the book, hopefully you’ve learned a thing or
two about Elasticsearch and are ready to deploy your cluster to production.
This chapter is not meant to be an exhaustive guide to running your cluster
in production, but it covers the key things to consider before putting
your cluster live.


Three main areas are covered:



	
Logistical considerations, such as hardware recommendations and deployment
strategies



	
Configuration changes that are more suited to a production environment



	
Post-deployment considerations, such as security, maximizing indexing performance,
and backups












Hardware


If you’ve been following the normal development path, you’ve probably been playing
with Elasticsearch on your laptop or on a small cluster of machines laying around.
But when it comes time to deploy Elasticsearch to production, there are a few
recommendations that you should consider.  Nothing is a hard-and-fast rule;
Elasticsearch is used for a wide range of tasks and on a bewildering array of
machines.  But these recommendations provide good starting points based on our experience with
production clusters.










Memory


If there is one resource that you will run out of first, it will likely be memory.
Sorting and aggregations can both be memory hungry, so enough heap space to
accommodate these is important.  Even when the heap is comparatively small,
extra memory can be given to the OS filesystem cache.  Because many data structures
used by Lucene are disk-based formats, Elasticsearch leverages the OS cache to
great effect.


A machine with 64 GB of RAM is the ideal sweet spot, but 32 GB and 16 GB machines
are also common.  Less than 8 GB tends to be counterproductive (you end up
needing many, many small machines), and greater than 64 GB has problems that we will
discuss in “Heap: Sizing and Swapping”.

















CPUs


Most Elasticsearch deployments tend to be rather light on CPU requirements.  As
such, the exact processor setup matters less than the other resources.  You should
choose a modern processor with multiple cores.  Common clusters utilize two to eight
core machines.


If you need to choose between faster CPUs or more cores, choose more cores.  The
extra concurrency that multiple cores offers will far outweigh a slightly faster
clock speed.

















Disks


Disks are important for all clusters, and doubly so for indexing-heavy clusters
(such as those that ingest log data).  Disks are the slowest subsystem in a server,
which means that write-heavy clusters can easily saturate their disks, which in
turn become the bottleneck of the cluster.


If you can afford SSDs, they are by far superior to any spinning media.  SSD-backed
nodes see boosts in both query and indexing performance.  If you can afford it,
SSDs are the way to go.


Check Your I/O Scheduler

If you are using SSDs, make sure your OS I/O scheduler is configured correctly.
When you write data to disk, the I/O scheduler decides when that data is
actually sent to the disk.  The default under most *nix distributions is a
scheduler called cfq (Completely Fair Queuing).


This scheduler allocates time slices to each process, and then optimizes the
delivery of these various queues to the disk.  It is optimized for spinning media:
the nature of rotating platters means it is more efficient to write data to disk
based on physical layout.


This is inefficient for SSD, however, since there are no spinning platters
involved.  Instead, deadline or noop should be used instead.  The deadline
scheduler optimizes based on how long writes have been pending, while noop
is just a simple FIFO queue.


This simple change can have dramatic impacts.  We’ve seen a 500-fold improvement
to write throughput just by using the correct scheduler.




If you use spinning media, try to obtain the fastest disks possible (high-performance server disks, 15k RPM drives).


Using RAID 0 is an effective way to increase disk speed, for both spinning disks
and SSD.  There is no need to use mirroring or parity variants of RAID, since
high availability is built into Elasticsearch via replicas.


Finally, avoid network-attached storage (NAS).  People routinely claim their
NAS solution is faster and more reliable than local drives.  Despite these claims,
we have never seen NAS live up to its hype.  NAS is often slower, displays
larger latencies with a wider deviation in average latency, and is a single
point of failure.

















Network


A fast and reliable network is obviously important to performance in a distributed
system.  Low latency helps ensure that nodes can communicate easily, while
high bandwidth helps shard movement and recovery.  Modern data-center networking
(1 GbE, 10 GbE) is sufficient for the vast majority of clusters.


Avoid clusters that span multiple data centers, even if the data centers are
colocated in close proximity.  Definitely avoid clusters that span large geographic
distances.


Elasticsearch clusters assume that all nodes are equal—not that half the nodes
are actually 150ms distant in another data center. Larger latencies tend to
exacerbate problems in distributed systems and make debugging and resolution
more difficult.


Similar to the NAS argument, everyone claims that their pipe between data centers is
robust and low latency. This is true—until it isn’t (a network failure will
happen eventually; you can count on it). From our experience, the hassle of
managing cross–data center clusters is simply not worth the cost.

















General Considerations


It is possible nowadays to obtain truly enormous machines:  hundreds of gigabytes
of RAM with dozens of CPU cores.  Conversely, it is also possible to spin up
thousands of small virtual machines in cloud platforms such as EC2.  Which
approach is best?


In general, it is better to prefer medium-to-large boxes.  Avoid small machines,
because you don’t want to manage a cluster with a thousand nodes, and the overhead
of simply running Elasticsearch is more apparent on such small boxes.


At the same time, avoid the truly enormous machines.  They often lead to imbalanced
resource usage (for example, all the memory is being used, but none of the CPU) and can
add logistical complexity if you have to run multiple nodes per machine.
























Java Virtual Machine


You should always run the most recent version of the Java Virtual Machine (JVM),
unless otherwise stated on the Elasticsearch website.  Elasticsearch, and in
particular Lucene, is a demanding piece of software.  The unit and integration
tests from Lucene often expose bugs in the JVM itself.  These bugs range from
mild annoyances to serious segfaults, so it is best to use the latest version
of the JVM where possible.


Java 7 is strongly preferred over Java 6.  Either Oracle or OpenJDK are acceptable. They are comparable in performance and stability.


If your application is written in Java and you are using the transport client
or node client, make sure the JVM running your application is identical to the
server JVM.  In few locations in Elasticsearch, Java’s native serialization
is used (IP addresses, exceptions, and so forth).  Unfortunately, Oracle has been known to
change the serialization format between minor releases, leading to strange errors.
This happens rarely, but it is best practice to keep the JVM versions identical
between client and server.


Please Do Not Tweak JVM Settings

The JVM exposes dozens (hundreds even!) of settings, parameters, and configurations.
They allow you to tweak and tune almost every aspect of the JVM.


When a knob is encountered, it is human nature to want to turn it.  We implore
you to squash this desire and not use custom JVM settings.  Elasticsearch is
a complex piece of software, and the current JVM settings have been tuned
over years of real-world usage.


It is easy to start turning knobs, producing opaque effects that are hard to measure,
and eventually detune your cluster into a slow, unstable mess.  When debugging
clusters, the first step is often to remove all custom configurations.  About
half the time, this alone restores stability and performance.



















Transport Client Versus Node Client


If you are using Java, you may wonder when to use the transport client versus the
node client.  As discussed at the beginning of the book, the transport client
acts as a communication layer between the cluster and your application.  It knows
the API and can automatically round-robin between nodes, sniff the cluster for you,
and more. But it is external to the cluster, similar to the REST clients.


The node client, on the other hand, is actually a node within the cluster (but
does not hold data, and cannot become master).  Because it is a node, it knows
the entire cluster state (where all the nodes reside, which shards live in which
nodes, and so forth). This means it can execute APIs with one less network hop.


There are uses-cases for both clients:



	
The transport client is ideal if you want to decouple your application from the
cluster.  For example, if your application quickly creates and destroys
connections to the cluster, a transport client is much “lighter” than a node client,
since it is not part of a cluster.


Similarly, if you need to create thousands of connections, you don’t want to
have thousands of node clients join the cluster.  The TC will be a better choice.



	
On the flipside, if you need only a few long-lived, persistent connection
objects to the cluster, a node client can be a bit more efficient since it knows
the cluster layout.  But it ties your application into the cluster, so it may
pose problems from a firewall perspective.





















Configuration Management


If you use configuration management already (Puppet, Chef, Ansible), you can skip this tip.


If you don’t use configuration management tools yet, you should!  Managing
a handful of servers by parallel-ssh may work now, but it will become a nightmare
as you grow your cluster.  It is almost impossible to edit 30 configuration files
by hand without making a mistake.


Configuration management tools help make your cluster consistent by automating
the process of config changes.  It may take a little time to set up and learn,
but it will pay itself off handsomely over time.

















Important Configuration Changes


Elasticsearch ships with very good defaults, especially when it comes to performance-
related settings and options.  When in doubt, just leave
the settings alone.  We have witnessed countless dozens of clusters ruined
by errant settings because the administrator thought he could turn a knob
and gain 100-fold improvement.

Note

Please read this entire section!  All configurations presented are equally
important, and are not listed in any particular order.  Please read
through all configuration options and apply them to your cluster.




Other databases may require tuning, but by and large, Elasticsearch does not.
If you are hitting performance problems, the solution is usually better data
layout or more nodes.  There are very few “magic knobs” in Elasticsearch.
If there were, we’d have turned them already!


With that said, there are some logistical configurations that should be changed
for production.  These changes are necessary either to make your life easier, or because
there is no way to set a good default (because it depends on your cluster layout).










Assign Names


Elasticseach by default starts a cluster named elasticsearch.  It is wise
to rename your production cluster to something else, simply to prevent accidents
whereby someone’s laptop joins the cluster.  A simple change to elasticsearch_production
can save a lot of heartache.


This can be changed in your elasticsearch.yml file:


cluster.name: elasticsearch_production


Similarly, it is wise to change the names of your nodes. As you’ve probably
noticed by now, Elasticsearch assigns a random Marvel superhero name
to your nodes at startup.  This is cute in development—but less cute when it is
3a.m. and you are trying to remember which physical machine was Tagak the Leopard Lord.


More important, since these names are generated on startup, each time you
restart your node, it will get a new name. This can make logs confusing,
since the names of all the nodes are constantly changing.


Boring as it might be, we recommend you give each node a name that makes sense
to you—a plain, descriptive name.  This is also configured in your elasticsearch.yml:


node.name: elasticsearch_005_data

















Paths


By default, Elasticsearch will place the plug-ins, logs, and—most important—your data in the installation directory.  This can lead to
unfortunate accidents, whereby the installation directory is accidentally overwritten
by a new installation of Elasticsearch. If you aren’t careful, you can erase all your data.


Don’t laugh—we’ve seen it happen more than a few times.


The best thing to do is relocate your data directory outside the installation
location.  You can optionally move your plug-in and log directories as well.


This can be changed as follows:


path.data: /path/to/data1,/path/to/data2 [image: 1]

# Path to log files:
path.logs: /path/to/logs

# Path to where plugins are installed:
path.plugins: /path/to/plugins


	[image: 1]

	Notice that you can specify more than one directory for data by using comma-separated lists.





Data can be saved to multiple directories, and if each directory
is mounted on a different hard drive, this is a simple and effective way to
set up a software RAID 0.  Elasticsearch will automatically stripe
data between the different directories, boosting performance

















Minimum Master Nodes


The minimum_master_nodes setting is extremely important to the
stability of your cluster.  This setting helps prevent split brains, the existence of two masters in a single cluster.


When you have a split brain, your cluster is at danger of losing data.  Because
the master is considered the supreme ruler of the cluster, it decides
when new indices can be created, how shards are moved, and so forth.  If you have two
masters, data integrity becomes perilous, since you have two nodes
that think they are in charge.


This setting tells Elasticsearch to not elect a master unless there are enough
master-eligible nodes available.  Only then will an election take place.


This setting should always be configured to a quorum (majority) of your master-eligible nodes.  A quorum is (number of master-eligible nodes / 2) + 1.
Here are some examples:



	
If you have ten regular nodes (can hold data, can become master), a quorum is
6.



	
If you have three dedicated master nodes and a hundred data nodes, the quorum is 2,
since you need to count only nodes that are master eligible.



	
If you have two regular nodes, you are in a conundrum.  A quorum would be
2, but this means a loss of one node will make your cluster inoperable.  A
setting of 1 will allow your cluster to function, but doesn’t protect against
split brain.  It is best to have a minimum of three nodes in situations like this.






This setting can be configured in your elasticsearch.yml file:


discovery.zen.minimum_master_nodes: 2


But because Elasticsearch clusters are dynamic, you could easily add or remove
nodes that will change the quorum.  It would be extremely irritating if you had
to push new configurations to each node and restart your whole cluster just to
change the setting.


For this reason, minimum_master_nodes (and other settings) can be configured
via a dynamic API call.  You can change the setting while your cluster is online:


PUT /_cluster/settings
{
    "persistent" : {
        "discovery.zen.minimum_master_nodes" : 2
    }
}


This will become a persistent setting that takes precedence over whatever is
in the static configuration.  You should modify this setting whenever you add or
remove master-eligible nodes.

















Recovery Settings


Several settings affect the behavior of shard recovery when
your cluster restarts.  First, we need to understand what happens if nothing is
configured.


Imagine you have ten nodes, and each node holds a single shard—either a primary
or a replica—in a 5 primary / 1 replica index.  You take your
entire cluster offline for maintenance (installing new drives, for example).  When you
restart your cluster, it just so happens that five nodes come online before
the other five.


Maybe the switch to the other five is being flaky, and they didn’t
receive the restart command right away.  Whatever the reason, you have five nodes
online.  These five nodes will gossip with each other, elect a master, and form a
cluster.  They notice that data is no longer evenly distributed, since five
nodes are missing from the cluster, and immediately start replicating new
shards between each other.


Finally, your other five nodes turn on and join the cluster.  These nodes see
that their data is being replicated to other nodes, so they delete their local
data (since it is now redundant, and may be outdated).  Then the cluster starts
to rebalance even more, since the cluster size just went from five to ten.


During this whole process, your nodes are thrashing the disk and network, moving
data around—for no good reason. For large clusters with terabytes of data,
this useless shuffling of data can take a really long time.  If all the nodes
had simply waited for the cluster to come online, all the data would have been
local and nothing would need to move.


Now that we know the problem, we can configure a few settings to alleviate it.
First, we need to give Elasticsearch a hard limit:


gateway.recover_after_nodes: 8


This will prevent Elasticsearch from starting a recovery until at least eight nodes
are present.  The value for this setting is a matter of personal preference: how
many nodes do you want present before you consider your cluster functional?
In this case, we are setting it to 8, which means the cluster is inoperable
unless there are eight nodes.


Then we tell Elasticsearch how many nodes should be in the cluster, and how
long we want to wait for all those nodes:


gateway.expected_nodes: 10
gateway.recover_after_time: 5m


What this means is that Elasticsearch will do the following:



	
Wait for eight nodes to be present



	
Begin recovering after 5 minutes or after ten nodes have joined the cluster,
whichever comes first.






These three settings allow you to avoid the excessive shard swapping that can
occur on cluster restarts.  It can literally make recovery take seconds instead
of hours.

















Prefer Unicast over Multicast


Elasticsearch is configured to use multicast discovery out of the box.  Multicast
works by sending UDP pings across your local network to discover nodes.  Other
Elasticsearch nodes will receive these pings and respond.  A cluster is formed
shortly after.


Multicast is excellent for development, since you don’t need to do anything.  Turn
a few nodes on, and they automatically find each other and form a cluster.


This ease of use is the exact reason you should disable it in production.  The
last thing you want is for nodes to accidentally join your production network, simply
because they received an errant multicast ping.  There is nothing wrong with
multicast per se.  Multicast simply leads to silly problems, and can be a bit
more fragile (for example, a network engineer fiddles with the network without telling
you—and all of a sudden nodes can’t find each other anymore).


In production, it is recommended to use unicast instead of multicast.  This works
by providing Elasticsearch a list of nodes that it should try to contact.  Once
the node contacts a member of the unicast list, it will receive a full cluster
state that lists all nodes in the cluster.  It will then proceed to contact
the master and join.


This means your unicast list does not need to hold all the nodes in your cluster.
It just needs enough nodes that a new node can find someone to talk to.  If you
use dedicated masters, just list your three dedicated masters and call it a day.
This setting is configured in your elasticsearch.yml:


discovery.zen.ping.multicast.enabled: false [image: 1]
discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]


	[image: 1]

	Make sure you disable multicast, since it can operate in parallel with unicast.



























Don’t Touch These Settings!


There are a few hotspots in Elasticsearch that people just can’t seem to avoid
tweaking.  We understand:  knobs just beg to be turned. But of all the knobs to turn, these you should really leave alone. They are
often abused and will contribute to terrible stability or terrible performance.
Or both.










Garbage Collector


As briefly introduced in “Garbage Collection Primer”, the JVM uses a garbage
collector to free unused memory.  This tip is really an extension of the last tip,
but deserves its own section for emphasis:


Do not change the default garbage collector!


The default GC for Elasticsearch is Concurrent-Mark and Sweep (CMS).  This GC
runs concurrently with the execution of the application so that it can minimize
pauses.  It does, however, have two stop-the-world phases.  It also has trouble
collecting large heaps.


Despite these downsides, it is currently the best GC for low-latency server software
like Elasticsearch.  The official recommendation is to use CMS.


There is a newer GC called the Garbage First GC (G1GC).  This newer GC is designed
to minimize pausing even more than CMS, and operate on large heaps.  It works
by dividing the heap into regions and predicting which regions contain the most
reclaimable space.  By collecting those regions first (garbage first), it can
minimize pauses and operate on very large heaps.


Sounds great!  Unfortunately, G1GC is still new, and fresh bugs are found routinely.
These bugs are usually of the segfault variety, and will cause hard crashes.
The Lucene test suite is brutal on GC algorithms, and it seems that G1GC hasn’t
had the kinks worked out yet.


We would like to recommend G1GC someday, but for now, it is simply not stable
enough to meet the demands of Elasticsearch and Lucene.

















Threadpools


Everyone loves to tweak threadpools.  For whatever reason, it seems people
cannot resist increasing thread counts.  Indexing a lot?  More threads!  Searching
a lot? More threads!  Node idling 95% of the time?  More threads!


The default threadpool settings in Elasticsearch are very sensible.  For all
threadpools (except search) the threadcount is set to the number of CPU cores.
If you have eight cores, you can be running only eight threads simultaneously.  It makes
sense to assign only eight threads to any particular threadpool.


Search gets a larger threadpool, and is configured to # cores * 3.


You might argue that some threads can block (such as on a disk I/O operation),
which is why you need more threads.  This is not a problem in Elasticsearch:
much of the disk I/O is handled by threads managed by Lucene, not Elasticsearch.


Furthermore, threadpools cooperate by passing work between each other.  You don’t
need to worry about a networking thread blocking because it is waiting on a disk
write.  The networking thread will have long since handed off that work unit to
another threadpool and gotten back to networking.


Finally, the compute capacity of your process is finite.  Having more threads just forces
the processor to switch thread contexts.  A processor can run only one thread
at a time, so when it needs to switch to a different thread, it stores the current
state (registers, and so forth) and loads another thread.  If you are lucky, the switch
will happen on the same core.  If you are unlucky, the switch may migrate to a
different core and require transport on an inter-core communication bus.


This context switching eats up cycles simply by doing administrative housekeeping; estimates can peg it as high as 30μs on modern CPUs.  So unless the thread
will be blocked for longer than 30μs, it is highly likely that that time would
have been better spent just processing and finishing early.


People routinely set threadpools to silly values.  On eight core machines, we have
run across configs with 60, 100, or even 1000 threads.  These settings will simply
thrash the CPU more than getting real work done.


So. Next time you want to tweak a threadpool, please don’t.  And if you
absolutely cannot resist, please keep your core count in mind and perhaps set
the count to double.  More than that is just a waste.
























Heap: Sizing and Swapping


The default installation of Elasticsearch is configured with a 1 GB heap.  For
just about every deployment, this number is far too small.  If you are using the
default heap values, your cluster is probably configured incorrectly.


There are two ways to change the heap size in Elasticsearch.  The easiest is to
set an environment variable called ES_HEAP_SIZE.  When the server process
starts, it will read this environment variable and set the heap accordingly.
As an example, you can set it via the command line as follows:


export ES_HEAP_SIZE=10g


Alternatively, you can pass in the heap size via a command-line argument when starting
the process, if that is easier for your setup:


./bin/elasticsearch -Xmx=10g -Xms=10g [image: 1]


	[image: 1]

	Ensure that the min (Xms) and max (Xmx) sizes are the same to prevent
the heap from resizing at runtime, a very costly process.





Generally, setting the ES_HEAP_SIZE environment variable is preferred over setting
explicit -Xmx and -Xms values.










Give Half Your Memory to Lucene


A common problem is configuring a heap that is too large.  You have a 64 GB
machine—and by golly, you want to give Elasticsearch all 64 GB of memory.  More
is better!


Heap is definitely important to Elasticsearch.  It is used by many in-memory data
structures to provide fast operation.  But with that said, there is another major
user of memory that is off heap: Lucene.


Lucene is designed to leverage the underlying OS for caching in-memory data structures.
Lucene segments are stored in individual files.  Because segments are immutable,
these files never change.  This makes them very cache friendly, and the underlying
OS will happily keep hot segments resident in memory for faster access.


Lucene’s performance relies on this interaction with the OS.  But if you give all
available memory to Elasticsearch’s heap, there won’t be any left over for Lucene.
This can seriously impact the performance of full-text search.


The standard recommendation is to give 50% of the available memory to Elasticsearch
heap, while leaving the other 50% free.  It won’t go unused; Lucene will happily
gobble up whatever is left over.

















Don’t Cross 32 GB!


There is another reason to not allocate enormous heaps to Elasticsearch. As it turns
out, the JVM uses a trick to compress object pointers when heaps are less than
~32 GB.


In Java, all objects are allocated on the heap and referenced by a pointer.
Ordinary object pointers (OOP) point at these objects, and are traditionally
the size of the CPU’s native word: either 32 bits or 64 bits, depending on the
processor.  The pointer references the exact byte location of the value.


For 32-bit systems, this means the maximum heap size is 4 GB.  For 64-bit systems,
the heap size can get much larger, but the overhead of 64-bit pointers means there
is more wasted space simply because the pointer is larger.  And worse than wasted
space, the larger pointers eat up more bandwidth when moving values between
main memory and various caches (LLC, L1, and so forth).


Java uses a trick called compressed oops
to get around this problem.  Instead of pointing at exact byte locations in
memory, the pointers reference object offsets.  This means a 32-bit pointer can
reference four billion objects, rather than four billion bytes.  Ultimately, this
means the heap can grow to around 32 GB of physical size while still using a 32-bit
pointer.


Once you cross that magical ~30–32 GB boundary, the pointers switch back to
ordinary object pointers.  The size of each pointer grows, more CPU-memory
bandwidth is used, and you effectively lose memory.  In fact, it takes until around
40–50 GB of allocated heap before you have the same effective memory of a 32 GB
heap using compressed oops.


The moral of the story is this: even when you have memory to spare, try to avoid
crossing the 32 GB heap boundary.  It wastes memory, reduces CPU performance, and
makes the GC struggle with large heaps.


I Have a Machine with 1 TB RAM!

The 32 GB line is fairly important.  So what do you do when your machine has a lot
of memory?  It is becoming increasingly common to see super-servers with 300–500 GB
of RAM.


First, we would recommend avoiding such large machines (see “Hardware”).


But if you already have the machines, you have two practical options:



	
Are you doing mostly full-text search?  Consider giving 32 GB to Elasticsearch
and letting Lucene use the rest of memory via the OS filesystem cache.  All that
memory will cache segments and lead to blisteringly fast full-text search.



	
Are you doing a lot of sorting/aggregations?  You’ll likely want that memory
in the heap then.  Instead of one node with 32 GB+ of RAM, consider running two or
more nodes on a single machine.  Still adhere to the 50% rule, though.  So if your
machine has 128 GB of RAM, run two nodes, each with 32 GB.  This means 64 GB will be
used for heaps, and 64 will be left over for Lucene.


If you choose this option, set cluster.routing.allocation.same_shard.host: true
in your config.  This will prevent a primary and a replica shard from colocating
to the same physical machine (since this would remove the benefits of replica high availability).























Swapping Is the Death of Performance


It should be obvious, but it bears spelling out clearly: swapping main memory
to disk will crush server performance.  Think about it: an in-memory operation
is one that needs to execute quickly.


If memory swaps to disk, a 100-microsecond operation becomes one that take 10
milliseconds.  Now repeat that increase in latency for all other 10us operations.
It isn’t difficult to see why swapping is terrible for performance.


The best thing to do is disable swap completely on your system.  This can be done
temporarily:


sudo swapoff -a


To disable it permanently, you’ll likely need to edit your /etc/fstab.  Consult
the documentation for your OS.


If disabling swap completely is not an option, you can try to lower swappiness.
This value controls how aggressively the OS tries to swap memory.
This prevents swapping under normal circumstances, but still allows the OS to swap
under emergency memory situations.


For most Linux systems, this is configured using the sysctl value:


vm.swappiness = 1 [image: 1]


	[image: 1]

	A swappiness of 1 is better than 0, since on some kernel versions a swappiness
of 0 can invoke the OOM-killer.





Finally, if neither approach is possible, you should enable mlockall.
 file.  This allows the JVM to lock its memory and prevent
it from being swapped by the OS.  In your elasticsearch.yml, set this:


bootstrap.mlockall: true
























File Descriptors and MMap


Lucene uses a very large number of files.  At the same time, Elasticsearch
uses a large number of sockets to communicate between nodes and HTTP clients.
All of this requires available file descriptors.


Sadly, many modern Linux distributions ship with a paltry 1,024 file descriptors
allowed per process.  This is far too low for even a small Elasticsearch
node, let alone one that is handling hundreds of indices.


You should increase your file descriptor count to something very large, such as
64,000.  This process is irritatingly difficult and highly dependent on your
particular OS and distribution.  Consult the documentation for your OS to determine
how best to change the allowed file descriptor count.


Once you think you’ve changed it, check Elasticsearch to make sure it really does
have enough file descriptors:


GET /_nodes/process

{
   "cluster_name": "elasticsearch__zach",
   "nodes": {
      "TGn9iO2_QQKb0kavcLbnDw": {
         "name": "Zach",
         "transport_address": "inet[/192.168.1.131:9300]",
         "host": "zacharys-air",
         "ip": "192.168.1.131",
         "version": "2.0.0-SNAPSHOT",
         "build": "612f461",
         "http_address": "inet[/192.168.1.131:9200]",
         "process": {
            "refresh_interval_in_millis": 1000,
            "id": 19808,
            "max_file_descriptors": 64000, [image: 1]
            "mlockall": true
         }
      }
   }
}


	[image: 1]

	The max_file_descriptors field shows the number of available descriptors that
the Elasticsearch process can access.





Elasticsearch also uses a mix of NioFS and MMapFS for the various files.  Ensure
that you configure the maximum map count so that there is ample virtual memory available for
mmapped files.  This can be set temporarily:


sysctl -w vm.max_map_count=262144


Or you can set it permanently by modifying vm.max_map_count setting in your /etc/sysctl.conf.

















Revisit This List Before Production


You are likely reading this section before you go into production.
The details covered in this chapter are good to be generally aware of, but it is
critical to revisit this entire list right before deploying to production.


Some of the topics will simply stop you cold (such as too few available file
descriptors).  These are easy enough to debug because they are quickly apparent.
Other issues, such as split brains and memory settings, are visible only after
something bad happens.  At that point, the resolution is often messy and tedious.


It is much better to proactively prevent these situations from occurring by configuring
your cluster appropriately before disaster strikes.  So if you are going to
dog-ear (or bookmark) one section from the entire book, this chapter would be
a good candidate.  The week before deploying to production, simply flip through
the list presented here and check off all the recommendations.
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